分类预测 | MATLAB实现LSTM长短期记忆神经网络多特征分类预测

简介: 分类预测 | MATLAB实现LSTM长短期记忆神经网络多特征分类预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

一种基于长短期记忆(LSTM)模型的多标签行业分类方法及装置,其方法包括:采集公司名,公司描述,公司经营范围数据;按类划分测试集,以及对所述采集的数据进行切分词等预处理操作;采用LSTM模型构建多个二分类器对所述预处理后的数据进行分类训练,以训练数据真实标签作为寻优方向,训练出多标签行业分类模型;以精度,召回率和F1值作为评估指标,实现对测试集数据的自动评估,并采集小部分新公司数据抽样进行人工评估,最终训练出精度更高的多标签行业分类模型;利用基于LSTM的多标签行业分类模型自动实现对待分类公司的多个行业标签预测.本发明的实施可大大降低人工标注成本,提高分类精度,且符合大多数公司非单一行业,而具有多个行业属性的情况.

⛄ 部分代码

% @=============================================================================

%

% Reference: Identifying Neuroimaging Biomarkers of Major Depressive Disorder

%            from Cortical Hemodynamic Responses

%            Using Machine Learning Approaches

%

% =============================================================================@

%

% This function is developed by Optical Imaging Lab, BME, NUS

% https://wiki.nus.edu.sg/display/OIL/NUS+Optical+Bioimaging+Laboratory

% The data is provided by fNIRS imaging team, iHealthTech, NUS

% https://ihealthtech.nus.edu.sg/

%

% @=============================================================================

function main()

   clc; clear; close all;

   

   % Add current path and all subfolders to the path.

   addpath(genpath(pwd));

   

   % -----------------------------------------------------------------

   % Pre-processed NIRS signals by: linear fitting, moving average, and

   %   removing artifact channels.

   % The generated ∆HbO dataset:

   %   samples_52ch_HbO.mat

   

   

   % -----------------------------------------------------------------

   % Three steps of fNRIS signals analysis for differing MDDs from HCs

   step = 3;

   

   if step == 1

       Method1_RankingFeatures();

       

   elseif step == 2

       Method2_GASelection();

       

   elseif step == 3

       Validation();

       

   end

   

end




%% ===================================================================

% Feature Selection Method I: Ranking Features by Statistical Test

%

function Method1_RankingFeatures()

   %   (1) A data matrix consists of 52 channels × 16 variables was extracted.

   %   (2) Statistical test was applied to find the significantly different

   %       channels on each variable, and subsequently generate feature channels

   %       as predictors for a classifier.

   stat_result = statistics_test_feature();

   % Results:

   %           Supplementary Figure 1 - Color Map

   %           Supplementary Figure 2 - count_sigdiff_channels

   %           Supplementary Table 3 - hc_cf_mstd, mdd_cf_mstd, pvalues_cluster

   

   

%     % generate feature set with significant difference

%     generate_sigdiff_feature(stat_result.feature_names, ...

%                               stat_result.diff_feature_cluster, ...

%                               stat_result.count_sigdiff_channels);

   


   %   (3) Five supervised models were implemented to learn pattern

   %       from feature channels

   %   (6)(10) Performances were evaluated by five-fold cross-validation and

   %       prediction accuracy

   data_type       = 'sigdiff_feature_topsigch';   % 'sigdiff_feature_topcluster'

   feature_type    = 'feature_channel';

   feature_fname   = 'featureset_sigdiff_5ch.mat';

   integral_type   = '';

   centroid_type   = '';

   model_type      = 'funcfit_nb';

   [pred_train, pred_test] = test_feature_performance(data_type, ...

                               feature_type, feature_fname, ...

                               integral_type, centroid_type, ...

                               model_type);

   % Result: Supplementary Table 6

   

   %   (10) performances were estimated by nested cross-validation

   [result_inner_cv, result_outer_train, result_outer_test] =      ...

                             nested_crossvalidation(data_type,     ...

                               feature_type, feature_fname,        ...

                               '', '', model_type);

   % Result: Supplementary Table 6

end



%% ===================================================================

% Feature Selection Method II: Two-phase Feature Selection by Genetic Algorithm

%    

function Method2_GASelection()

   % -------------- Phase-One --------------

   % The input is the candidate channels from one of the 10 significant variables,

   % while the output is a channel subset of the specific variable.

   % The optimization of channel selection was performed over all 10 variables.

   data_type       = 'integral';

   feature_type    = 'feature_channel';

   feature_fname   = '';

   integral_type   = 'integral_stim';

   centroid_type   = '';

   model_type      = 'funcfit_svm';

   func_pop        = @func_population_rand;

   binary_ga(data_type, feature_type, feature_fname, ...

               integral_type, centroid_type, model_type, func_pop);

   % Result: ga_ma50_integral_stim__svm_0.7316_0.7363.mat, etc.

   

   % -------------- Phase-Two --------------

   % The selected channel subsets from 10 significant variables were then

   % combined into a feature set, i.e., fusion features.

   generate_fusion_feature('svm');

   % Result: fusion_10variants_svm.mat, etc.

   

   % GA learned which feature channels contributed best to the accuracy

   % of a supervised model.

   data_type       = 'fusion_feature';

   feature_type    = 'feature_channel';

   feature_fname   = 'fusion_10variants_svm.mat';

   model_type      = 'funcfit_svm';

   func_pop        = @func_population_optm;

   binary_ga(data_type, feature_type, feature_fname, ...

                '', '', model_type, func_pop);

   % Results:  

   %           ga_fusion_features_svm_0.8053_0.7802.mat, etc.

   %           Supplementary Figure 3

end



%% ===================================================================

% Validate the Performance of Optimal Features

%

function Validation()

   % -----------------------------------------------------------------

   % Classification performances were reported by the

   % 5-fold cross-validation in training set and

   % prediction accuracy in test set.

   data_type       = 'ga_optimal_feature';

   feature_type    = 'feature_channel';

   feature_fname   = 'ga_fusion_features_svm_0.8053_0.7802.mat';

   model_type      = 'funcfit_svm';

   [pred_train, pred_test] = test_feature_performance(data_type,   ...

                               feature_type, feature_fname,        ...

                               '', '', model_type);

   % Result: TABLE 1 of main text

   

   % ----------------------------------------------------------------------

   % Classification performances were estimated by nested cross-validation

   [result_inner_cv, result_outer_train, result_outer_test] =      ...

                             nested_crossvalidation(data_type,     ...

                               feature_type, feature_fname,        ...

                               '', '', model_type);

   % Result: TABLE 1 of main text

   

   

   % -------------- Characteristics of optimal feature --------------

   p1_fus_feature_fname = 'fusion_10variants_svm.mat';

   p2_opt_feature_fname = 'ga_fusion_features_svm_0.8053_0.7802.mat';

   [pvalues_optfeatures, pvalues_roifeatures, ...

           hc_roi, mdd_roi, count_common_channels] = ...

       test_optimalfeature(p1_fus_feature_fname, p2_opt_feature_fname);

   % Results:

   %           Figure 2 of main text -- hc_roi, mdd_roi

   %           Figure 3 of main text -- count_common_channels

   %           Supplementary Table 4 -- hc_roi, mdd_roi, pvalues_roifeatures

   

   

   % -------------- Common features between different models --------------

%     test_common_features();

end

⛄ 运行结果

⛄ 参考文献

[1]易思宇. 基于LSTM心冲击信号的心率异常分类方法的研究.

[2]彭燕虹, 潘嵘, 周赖靖竞,等. 一种基于长短期记忆(LSTM)模型的多标签行业分类方法及装置:, CN106777335A[P]. 2017.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
16天前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
102 0
|
16天前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
12天前
|
算法 数据挖掘 区块链
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
|
15天前
|
安全 网络性能优化 网络虚拟化
网络交换机分类与功能解析
接入交换机(ASW)连接终端设备,提供高密度端口与基础安全策略;二层交换机(LSW)基于MAC地址转发数据,构成局域网基础;汇聚交换机(DSW)聚合流量并实施VLAN路由、QoS等高级策略;核心交换机(CSW)作为网络骨干,具备高性能、高可靠性的高速转发能力;中间交换机(ISW)可指汇聚层设备或刀片服务器内交换模块。典型流量路径为:终端→ASW→DSW/ISW→CSW,分层架构提升网络扩展性与管理效率。(238字)
343 0
|
16天前
|
传感器 数据采集 存储
【无线传感器】使用 MATLAB和 XBee连续监控温度传感器无线网络研究(Matlab代码实现)
【无线传感器】使用 MATLAB和 XBee连续监控温度传感器无线网络研究(Matlab代码实现)
|
16天前
|
机器学习/深度学习 编解码 并行计算
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)
|
9天前
|
算法 计算机视觉
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
|
9天前
|
编解码 人工智能 算法
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
|
8天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
8天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
87 14

热门文章

最新文章