Python实现循环神经网络RNN-LSTM回归模型项目实战(股票价格预测)

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: Python实现循环神经网络RNN-LSTM回归模型项目实战(股票价格预测)

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

金融一直是现代社会非常热门的一个研究方向,随着社会的发展,越来越多的数学方法被应用于金融领域的描述中。我们寄希望于用一种更客观地表达来研究金融。而股票市场作为一个看似门槛极低的金融市场,参与者众多,与利益直接挂钩,是金融市场的一个大热研究方向。 

中国股市于 1989 年开始试运行,自此,开始了中国股市近30年的起起伏伏。中国股市虽相较于美国股市还没有很成熟,但是经过30年的发展,也在逐渐向一个成熟的市场发展。截至2019年,沪深A股交易股票已有3589只,如何在其中筛选出有潜力的股票,或者说如何对股票价格进行短期的预测,这在深度学习日趋兴起的背景下,成为了我们想要尝试解决的一个问题。 

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下

编号 

变量名称

描述

1

date

 

2

open

 

3

high

 

4

low

 

5

close

目标变量

6

volume

 

7

Name

 

数据详情如下(部分展示):

image.png

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的tail()方法查看后十行数据:

image.png

关键代码:

image.png

3.2查看AAPL公司股票数据的描述性统计分析

使用Pandas工具的describe()方法AAPL公司的描述性统计分析信息:

image.png

从上图可以看到,AAPL公司股票数据开盘价、最高价、最低价、收盘价、成交量的平均值、标准差、最小值、中位数、最大值。

关键代码:

image.png

3.3查看AAPL公司股票数据的摘要信息

通过Pandas工具的info()方法来查看AAPL公司股票数据的摘要信息:

image.png

通过上图可以看到,总共有6个数据项,1259条数据,数据时间范围为2013到2018年,数据中无缺失值。

关键代码如下:

image.png

4.探索性数据分析

4.1 绘制股票收盘价曲线图

用Pandas工具的plot()方法进行绘图,图形如下:

image.png

通过上图可以看到,4家公司的股票收盘价格基本每年呈上升趋势。

4.2 绘制股票成交量曲线图

image.png

从上图中可以看到,每家公司股票的成交量基本都是在一定的范围内进行波动。

4.3 绘制股票收盘价10天、20天、50天累计曲线图

image.png

从上图中可以看到,APPLE公司股票收盘价10天、20天、50天内累计收盘价呈上升趋势,而APPLE公司股票收盘价比较稳定。

关键代码:

image.png

4.4 绘制股票日收益曲线图

image.png

从上图中可以看到,每家股票的日收益都存在一定的波动,同时也说明了股票有风险、入市需谨慎。

关键代码如下:

image.png

4.5 绘制股票日收益直方图

image.png

从上图中可以看到,4家公司的日收益均集中在-0.05-0.05之间。

关键代码:

image.png

4.6 相关性分析

通过Pandas工具的corr()方法进行相关性分析:

image.png

从上图可以看到,除成交量外其它数据项之间相关性比较高。

5.特征工程

5.1 建立特征数据和标签数据

close为标签数据,除 close之外的为特征数据。关键代码如下:

image.png

5.2 数据集拆分

训练集拆分,分为训练集和验证集,70%训练集和30%验证集。关键代码如下:

image.png

5.3 数据归一化

通过MinMaxScaler工具进行数据的归一化,把数据缩放到0-1区间,关键代码如下:

image.png

6.构建LSTM回归模型

Hochreiter 等学者(1997)[21]提出了长短时记忆单元(Long Short-Term Memory,LSTM)用于改进传统的循环神经网络模型(RNN),该模型通过门的开关实现时间上的记忆功能,并反之梯度小时,实验结果表明,LSTM 能有效地解决 RNN 训练时的梯度爆炸和梯度消失问题。2005 年,Alex Graves,Jürgen Schmidhuber[22]提出了使用完全的后向传播方式训练 LSTM 模型,使得LSTM 的实现过程更加可靠。2015 年,Chung 等学者提出了简化版本的LSTM,门控反馈 RNN(GF-RNN)通过允许和控制从上部复现层流向下层的信号,使用每对层的全局选通单元,扩展了堆叠多个复现层的现有方法。层之间交换的递归信号基于先前的隐藏状态和当前输入自适应地选通。相比于传统的神经网络模型。LSTM 神经网络模型对于神经组织的认知过程的模拟更为准确。 

6.1建模

编号

模型名称

参数

1

LSTM回归模型

optimizer='adam'

2

loss='mean_squared_error'

3

metrics=['acc']

关键代码如下:

image.png

6.2查看模型信息

通过模型的summary()方法查看模型的信息,如下图所示:

image.png

通过上图可以看到,模型中有LSTM层、Dense层,模型总参数为117619个。

7.模型评估

7.1评估指标及结果

评估指标主要包括可解释方差值、均方误差、R方值等等。

模型名称

指标名称

指标值

测试集

LSTM回归模型

均方误差

2.91

可解释方差值

1.0

R方

1.0

从上表可以看出,R方100%  可解释方差值100%,LSTM回归模型比较优秀,效果非常好。

关键代码如下:

image.png

7.2 真实值与预测值对比图

image.png

从上图可以看出真实值和预测值波动基本一致,模型拟合效果非常棒。

8.结论与展望

综上所述,本文采用了LSTM回归模型,最终证明了我们提出的模型效果良好。可用于日常金融中股票价格的预测。


# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1KqZQatGhXKBtLBGc8kPbTw 
提取码:l9lk
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
3月前
|
存储 数据采集 数据库
Python爬虫实战:股票分时数据抓取与存储
Python爬虫实战:股票分时数据抓取与存储
|
7月前
|
数据采集 人工智能 自然语言处理
AI Agent 金融助理0-1 Tutorial 利用Python实时查询股票API的FinanceAgent框架构建股票(美股/A股/港股) AI Finance Agent
金融领域Finance AI Agents方面的工作,发现很多行业需求和用户输入的 query都是和查询股价/行情/指数/财报汇总/金融理财建议相关。如果需要准确的 金融实时数据就不能只依赖LLM 来生成了。常规的方案包括 RAG (包括调用API )再把对应数据和prompt 一起拼接送给大模型来做文本生成。稳定的一些商业机构的金融数据API基本都是收费的,如果是以科研和demo性质有一些开放爬虫API可以使用。这里主要介绍一下 FinanceAgent,github地址 https://github.com/AI-Hub-Admin/FinanceAgent
|
7月前
|
机器学习/深度学习 存储 自然语言处理
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
|
8月前
|
数据挖掘 Python
用python的tushare模块分析股票案例(python3经典编程案例)
该文章提供了使用Python的tushare模块分析股票数据的案例,展示了如何获取股票数据以及进行基本的数据分析。
397 0
|
8月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能股票交易策略
使用Python实现智能股票交易策略
215 0
|
5月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
139 17
|
5月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
105 10
|
5月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
5月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
129 10
|
5月前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。