深度学习入门案例:运用神经网络实现价格分类

简介: 深度学习入门案例:运用神经网络实现价格分类

🍔 前言

踏入深度学习的奇妙世界,就像开启了一场探索未知的旅程。今天,我们将携手踏上一小段轻松而充满乐趣的入门之旅——价格分类。想象一下,通过神奇的神经网络,我们能够教会电脑理解并预测商品的价格区间,是不是既实用又令人兴奋呢?别担心复杂的数学公式,让我们以轻松愉悦的心态,一步步揭开深度学习的神秘面纱,从价格分类这个小案例开始,共同见证智能的力量吧!

案例背景🍼

小明创办了一家手机公司,他不知道如何估算手机产品的价格。为了解决这个问题,他收集了多家公司的手机销售数据。

我们需要帮助小明找出手机的功能(例如:RAM等)与其售价之间的某种关系。我们可以使用机器学习的方法来解决这个问题,也可以构建一个全连接的网络。

要求🍼

在这个问题中,我们不需要预测实际价格,而是一个价格范围,它的范围使用 0、1、2、3 来表示,所以该问题也是一个分类问题。

🍔 构建数据集

数据共有 2000 条, 其中 1600 条数据作为训练集, 400 条数据用作测试集。 我们使用 sklearn 的数据集划分工作来完成。并使用 PyTorch 的 TensorDataset 来将数据集构建为 Dataset 对象,方便构造数据集加载对象。

# 构建数据集
def create_dataset():
    data = pd.read_csv('data/手机价格预测.csv')
    # 特征值和目标值
    x, y = data.iloc[:, :-1], data.iloc[:, -1]
    x = x.astype(np.float32)
    y = y.astype(np.int64)
    # 数据集划分
    x_train, x_valid, y_train, y_valid = \
        train_test_split(x, y, train_size=0.8, random_state=88, stratify=y)
    # 构建数据集
    train_dataset = TensorDataset(torch.from_numpy(x_train.values), torch.tensor(y_train.values))
    valid_dataset = TensorDataset(torch.from_numpy(x_valid.values), torch.tensor(y_valid.values))
    return train_dataset, valid_dataset, x_train.shape[1], len(np.unique(y))
train_dataset, valid_dataset, input_dim, class_num = create_dataset()

🍔 构建分类网络模型

我们构建的用于手机价格分类的模型叫做全连接神经网络。它主要由三个线性层来构建,在每个线性层后,我们使用的时 sigmoid 激活函数。

# 构建网络模型
class PhonePriceModel(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(PhonePriceModel, self).__init__()
        self.linear1 = nn.Linear(input_dim, 128)
        self.linear2 = nn.Linear(128, 256)
        self.linear3 = nn.Linear(256, output_dim)
    def _activation(self, x):
        return torch.sigmoid(x)
    def forward(self, x):
        x = self._activation(self.linear1(x))
        x = self._activation(self.linear2(x))
        output = self.linear3(x)
        return output

我们的网络共有 3 个全连接层, 具体信息如下:

  1. 第一层: 输入为维度为 20, 输出维度为: 128
  2. 第二层: 输入为维度为 128, 输出维度为: 256
  3. 第三层: 输入为维度为 256, 输出维度为: 4

我们使用 sigmoid 激活函数.

🍔 编写训练函数

网络编写完成之后,我们需要编写训练函数。所谓的训练函数,指的是输入数据读取送入网络计算损失更新参数的流程,该流程较为固定。我们使用的是多分类交叉生损失函数、使用 SGD 优化方法。最终,将训练好的模型持久化到磁盘中。

def train():
    # 固定随机数种子
    torch.manual_seed(0)
    # 初始化模型
    model = PhonePriceModel(input_dim, class_num)
    # 损失函数
    criterion = nn.CrossEntropyLoss()
    # 优化方法
    optimizer = optim.SGD(model.parameters(), lr=1e-3)
    # 训练轮数
    num_epoch = 50
    for epoch_idx in range(num_epoch):
        # 初始化数据加载器
        dataloader = DataLoader(train_dataset, shuffle=True, batch_size=8)
        # 训练时间
        start = time.time()
        # 计算损失
        total_loss = 0.0
        total_num = 1
        # 准确率
        correct = 0
        for x, y in dataloader:
            output = model(x)
            # 计算损失
            loss = criterion(output, y)
            # 梯度清零
            optimizer.zero_grad()
            # 反向传播
            loss.backward()
            # 参数更新
            optimizer.step()
            total_num += len(y)
            total_loss += loss.item() * len(y)
        print('epoch: %4s loss: %.2f, time: %.2fs' %
              (epoch_idx + 1, total_loss / total_num, time.time() - start))
    # 模型保存
    torch.save(model.state_dict(), 'model/phone-price-model.bin')

🍔 编写评估函数

评估函数,也叫预测函数推理函数,主要使用训练好的模型,对未知的样本的进行预测的过程。我们这里使用前面单独划分出来的测试集来进行评估。

def test():
    # 加载模型
    model = PhonePriceModel(input_dim, class_num)
    model.load_state_dict(torch.load('model/phone-price-model.bin'))
    # 构建加载器
    dataloader = DataLoader(valid_dataset, batch_size=8, shuffle=False)
    # 评估测试集
    correct = 0
    for x, y in dataloader:
        output = model(x)
        y_pred = torch.argmax(output, dim=1)
        correct += (y_pred == y).sum()
    print('Acc: %.5f' % (correct.item() / len(valid_dataset)))

程序输出结果:

Acc: 0.54750

🍔 网络性能调优

我们前面的网络模型在测试集的准确率为: 0.54750, 我们可以通过以下方面进行调优:

  1. 对输入数据进行标准化
  2. 调整优化方法
  3. 调整学习率
  4. 增加批量归一化层
  5. 增加网络层数、神经元个数
  6. 增加训练轮数
  7. 等等...

为提升准确率,我进行下如下调整💯 :

🐼 优化方法由 SGD 调整为 Adam

🐼 学习率由 1e-3 调整为 1e-4

🐼 对数据数据进行标准化

🐼 增加网络深度, 即: 增加网络参数量

网络模型在测试集的准确率由 0.5475 上升到 0.9625,下面奉上调整后的完整代码🍭 :

import torch
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
from sklearn.model_selection import train_test_split
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
import torch.optim as optim
import numpy as np
import time
from sklearn.preprocessing import StandardScaler
# 构建数据集
def create_dataset():
    data = pd.read_csv('data/手机价格预测.csv')
    # 特征值和目标值
    x, y = data.iloc[:, :-1], data.iloc[:, -1]
    x = x.astype(np.float32)
    y = y.astype(np.int64)
    # 数据集划分
    x_train, x_valid, y_train, y_valid = \
        train_test_split(x, y, train_size=0.8, random_state=88, stratify=y)
    # 数据标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_valid = transfer.transform(x_valid)
    # 构建数据集
    train_dataset = TensorDataset(torch.from_numpy(x_train), torch.tensor(y_train.values))
    valid_dataset = TensorDataset(torch.from_numpy(x_valid), torch.tensor(y_valid.values))
    return train_dataset, valid_dataset, x_train.shape[1], len(np.unique(y))
train_dataset, valid_dataset, input_dim, class_num = create_dataset()
# 构建网络模型
class PhonePriceModel(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(PhonePriceModel, self).__init__()
        self.linear1 = nn.Linear(input_dim, 128)
        self.linear2 = nn.Linear(128, 256)
        self.linear3 = nn.Linear(256, 512)
        self.linear4 = nn.Linear(512, 128)
        self.linear5 = nn.Linear(128, output_dim)
    def _activation(self, x):
        return torch.sigmoid(x)
    def forward(self, x):
        x = self._activation(self.linear1(x))
        x = self._activation(self.linear2(x))
        x = self._activation(self.linear3(x))
        x = self._activation(self.linear4(x))
        output = self.linear5(x)
        return output
# 编写训练函数
def train():
    # 固定随机数种子
    torch.manual_seed(0)
    # 初始化模型
    model = PhonePriceModel(input_dim, class_num)
    # 损失函数
    criterion = nn.CrossEntropyLoss()
    # 优化方法
    optimizer = optim.Adam(model.parameters(), lr=1e-4)
    # 训练轮数
    num_epoch = 50
    for epoch_idx in range(num_epoch):
        # 初始化数据加载器
        dataloader = DataLoader(train_dataset, shuffle=True, batch_size=8)
        # 训练时间
        start = time.time()
        # 计算损失
        total_loss = 0.0
        total_num = 1
        # 准确率
        correct = 0
        for x, y in dataloader:
            output = model(x)
            # 计算损失
            loss = criterion(output, y)
            # 梯度清零
            optimizer.zero_grad()
            # 反向传播
            loss.backward()
            # 参数更新
            optimizer.step()
            total_num += len(y)
            total_loss += loss.item() * len(y)
        print('epoch: %4s loss: %.2f, time: %.2fs' %
              (epoch_idx + 1, total_loss / total_num, time.time() - start))
    # 模型保存
    torch.save(model.state_dict(), 'model/phone-price-model.bin')
def test():
    # 加载模型
    model = PhonePriceModel(input_dim, class_num)
    model.load_state_dict(torch.load('model/phone-price-model.bin'))
    # 构建加载器
    dataloader = DataLoader(valid_dataset, batch_size=8, shuffle=False)
    # 评估测试集
    correct = 0
    for x, y in dataloader:
        output = model(x)
        y_pred = torch.argmax(output, dim=1)
        correct += (y_pred == y).sum()
    print('Acc: %.5f' % (correct.item() / len(valid_dataset)))
if __name__ == '__main__':
    train()
    test()

结语💘

学习并运用神经网络实现价格分类,是适应数据驱动时代的重要技能。它不仅能够显著提升决策效率和精准度,还能帮助我们从海量数据中挖掘出有价值的价格规律。掌握这一技术,将为个人和企业带来市场竞争中的显著优势。因此,深入探索和实践神经网络在价格分类中的应用,无疑是我们把握未来机遇、实现持续发展的关键所在。在此感谢CSDN大佬们的支持,有需要改进的地方欢迎大家指正!

相关文章
|
11天前
|
网络协议
计算机网络的分类
【10月更文挑战第11天】 计算机网络可按覆盖范围(局域网、城域网、广域网)、传输技术(有线、无线)、拓扑结构(星型、总线型、环型、网状型)、使用者(公用、专用)、交换方式(电路交换、分组交换)和服务类型(面向连接、无连接)等多种方式进行分类,每种分类方式揭示了网络的不同特性和应用场景。
|
21天前
|
弹性计算 人工智能 运维
Terraform从入门到实践:快速构建你的第一张业务网络(上)
本次分享主题为《Terraform从入门到实践:快速构建你的第一张业务网络》。首先介绍如何入门和实践Terraform,随后演示如何使用Terraform快速构建业务网络。内容涵盖云上运维挑战及IaC解决方案,并重磅发布Terraform Explorer产品,旨在降低使用门槛并提升用户体验。此外,还将分享Terraform在实际生产中的最佳实践,帮助解决云上运维难题。
105 1
Terraform从入门到实践:快速构建你的第一张业务网络(上)
|
3天前
|
Java
[Java]Socket套接字(网络编程入门)
本文介绍了基于Java Socket实现的一对一和多对多聊天模式。一对一模式通过Server和Client类实现简单的消息收发;多对多模式则通过Server类维护客户端集合,并使用多线程实现实时消息广播。文章旨在帮助读者理解Socket的基本原理和应用。
11 1
|
9天前
|
机器学习/深度学习 Serverless 索引
分类网络中one-hot的作用
在分类任务中,使用神经网络时,通常需要将类别标签转换为一种合适的输入格式。这时候,one-hot编码(one-hot encoding)是一种常见且有效的方法。one-hot编码将类别标签表示为向量形式,其中只有一个元素为1,其他元素为0。
22 3
|
11天前
|
存储 分布式计算 负载均衡
|
11天前
|
安全 区块链 数据库
|
20天前
|
机器学习/深度学习 自然语言处理 TensorFlow
课外阅读之深度学习如何入门?
课外阅读之深度学习如何入门?
26 0
|
5天前
|
机器学习/深度学习 算法 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第18天】 本文深入探讨了深度学习在图像识别领域的应用,分析了其技术优势和面临的主要挑战。通过具体案例和数据支持,展示了深度学习如何革新图像识别技术,并指出了未来发展的方向。
101 58
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习在图像识别中的应用与挑战
【10月更文挑战第20天】 随着人工智能技术的不断发展,深度学习已经在许多领域展现出强大的应用潜力。本文将探讨深度学习在图像识别领域的应用,以及面临的挑战和可能的解决方案。通过分析现有的研究成果和技术趋势,我们可以更好地理解深度学习在图像识别中的潜力和局限性,为未来的研究和应用提供参考。
19 7
|
2天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习在图像识别中的应用
【10月更文挑战第21天】本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,并展示如何使用Python和TensorFlow库实现一个简单的图像识别模型。通过这个示例,我们将了解深度学习如何帮助计算机“看”世界,并展望其在未来的应用前景。
10 5