模糊聚类FCM算法和基于GA遗传优化的FCM聚类算法matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: 模糊聚类FCM算法和基于GA遗传优化的FCM聚类算法matlab仿真

1.算法概述

  在各种糊聚类算法中 ,模糊C -均值聚类算法FCM (FuzzyC MeanClusteringAlgorithm )的应用最为广泛.但在实际的应用中 ,FCM算法却容易陷入局部最优解.因此 ,提出了一种基于遗传算法GA(GeneticAlgorithm )的模糊聚类分析方法 ,它利用了遗传算法随机搜索的特点 ,可以避免陷入局部最优解.实验表明 ,将该遗传算法与FCM算法结合起来进行聚类分析 ,比单一使用遗传算法或单一使用FCM算法进行聚类分析的效果都要好.

   针对FCM聚类,GA-FCM聚类采用了GA与FCM(GA-FCM)聚类进行全局搜索,克服了FCM聚类容易陷入局部极小值的问题.GA-FCM聚类是以全局最优个体将GA聚类用一个最优个体,迭代过程中既包括了GA运算.它依据GA的随机性扩大了搜索范围,之后在所找到的个体.

   模糊C均值算法是普通C均值算法的改进,普通C均值算法对于数据的划分是硬性的,而FCM则是一种柔性的模糊划分。
   首先,需要一种方法度量两个样本的相似性,这个就是距离。FCM是一种重要的聚类算法,其目标是将n维空间中的数据X = {x_1, ..., x_N}分配到C个聚类中心v_1, ..., v_C。在欧氏距离意义下,数据靠近哪个聚类中心就属于哪个类。

  把这种一个样本属于结果的这种相似的程度称为样本的隶属度,一般用表示,表示一个样本相似于不同结果的一个程度指标。

    基于此,假定数据集为X,如果把这些数据划分成c类的话,那么对应的就有c个类中心为C,每个样本j属于某一类i的隶属度为,则定义一个FCM目标函数及其约束条件如下所示:

1.png

  分别对其中的变量、求导数,求该目标函数的极值。

  在最终的结果中,与是相互包含的,在fcm算法的初始阶段既没有,也没有,所以在程序开始时可以任意赋值给和其中一个,迭代计算。

FCM类中心的更新法则:

2.png

    看式子可以发现也是一个加权平均,类i确定后,首先将所有点到该类的隶属度求和,然后对每个点,隶属度除以这个和就是所占的比重,乘以​就是这个点对于这个类i的贡献值了。   

2.仿真效果预览
matlab2022a仿真结果如下:
3.png
4.png
5.png

3.MATLAB部分代码预览

max=10;%最大值
min=0;%最小值
cluster_n=5;%所要聚类的个数
pop_size=150;%种群大小
Pc=0.25;%交叉概率
Pm=0.05;%变异概率
max_run=300;%最大运行次数
N=size(data,2);%特征维数
Num_boolean=8;%表示“7.5“所要得二进制个数
G_F=zeros(pop_size,1);%染色体适应度
U=zeros(cluster_n, size(data,1));%初始化隶度矩U
expo=2;%权值m大小
SL=2;
min_impro=0.0001;
 
 
G=round(rand(pop_size,cluster_n*N*Num_boolean));
for h=1:max_run
for i=1:pop_size %遍历整个种群
     center=zeros(cluster_n,N);%初始化单个染色体中心
     center=code(G(i,:),cluster_n,N,max,min,Num_boolean);%(1)对染色体解码,得到实数表示的聚类中心
     [U,obj_fitness(i),obj(i)]=Uconvert(data, cluster_n, expo,center);
 end
     if i > 1,
        if abs(obj(i) - obj(i-10)) < min_impro, break; end,
    end
 T(h)=h;    
 Fit=obj;
 [Order,Index]=sort(Fit);
 BF=Order(1);
 BFI=BF;
 BG=G(Index(1),:);
 ln=1;
 for i=1:1:SL
     BGG(i,:)=G(Index(ln),:);
     ln=ln+1;
 end 
 Best_value(h)=Order(1);
 Best_chrom=G(Index(1),:);
 
 
 NG=selection(G,obj_fitness,pop_size);
 NG=crossover(NG,Pc,pop_size);
 NG=mutation(NG,Pm,pop_size);
 Rs=4;
 for i=1:1:SL
     NG(pop_size-Rs,:)=BGG(i,:);
     Rs=Rs-1;
 end
 G=NG;
end
center
b=sort(Best_value);
Pbest=b(1)
 
plot(T,Best_value);
plotflag=2;
M=2;
[U2,P,Dist,Cluster_Res,Obj_Fcn,iter]=fuzzycm(data,cluster_n,plotflag,M)
A_019
相关文章
|
3天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
5天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
4天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
150 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
120 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
8月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)