MATLAB用改进K-Means(K-均值)聚类算法数据挖掘高校学生的期末考试成绩

简介: MATLAB用改进K-Means(K-均值)聚类算法数据挖掘高校学生的期末考试成绩

全文链接:http://tecdat.cn/?p=30832


本文首先阐明了聚类算法的基本概念,介绍了几种比较典型的聚类算法,然后重点阐述了K-均值算法的基本思想,对K-均值算法的优缺点做了分析,回顾了对K-均值改进方法的文献,最后在Matlab中应用了改进的K-均值算法对数据进行了分析点击文末“阅读原文”获取完整代码数据


常用的聚类算法

常用的聚类算法有:K-MEANS、K-MEDOIDS、BIRCH、CURE、DBSCAN、STING。

相关视频

image.png

image.png

主要聚类算法分类

类别 包括的主要算法
划分的方法 K-MEANS算法(K平均)、K-MEDOIDS算法(K中心点)、CLARANS算法(基于选择的算法)
层次的方法 BIRCH算法(平衡迭代规约和聚类)、CURE算法(代表点聚类)、CHAMELEON算法(动态模型)
基于密度的方法 DBSCAN算法(基于高密度连接区域)、DENCLUE算法(密度分布函数)、OPTICS算法(对象排序识别)
基于网络的方法 STING算法(统计信息网络)、CLIQUE算法(聚类高维空间)、WAVE-CLUSTER算法(小波变换)
基于模型的方法 统计学方法、神经网络方法

聚类算法的性能比较

聚类算法 适合数据类型 算法效率 发现的聚类形状 能否处理大数据集 是否受初始聚类中心影响 对异常数据敏感性 对输入数据顺序敏感性
K-MEANS 数值型 较高 凸形或球形 非常敏感 不敏感
K-MEDOIDS 数值型 一般 凸形或球形 不敏感 不敏感
BIRCH 数值型 凸形或球形 不敏感 不太敏感
CURE 数值型 较高 任意形状 不敏感 不太敏感
DBSCAN 数值型 一般 任意形状 敏感 敏感
STING 数值型 任意形状 一般 不敏感

 

由表可得到以下结论:1)大部分常用聚类算法只适合处理数值型数据;2)若考虑算法效率、初始聚类中心影响性和对异常数据敏感性,其中BIRCH算法、CURE算法以及STING算法能得到较好的结果;3)CURE算法、DBSCAN算法以及STING算法能发现任意形状的聚类。

改进聚类的主要步骤

聚类的主要步骤由以下几个方面组成:

(1)数据预处理:根据聚类分析的要求,对输入数据集进行特征标准化及降维等操作。

(2)特征选择及特征提取:将由数据预处理过程得到的最初始的特征中的最有效的特征选择出来,并将选取出来的最有效特征存放于特定的向量中,然后对这些有效特征进行相应的转换,得到新的有效突出特征。

(3)聚类(分组):根据需要选择合适的相似性度量函数对数据集中的数据对象相似程度进行度量,以此进行数据对象的聚类(分组)。

(4)对聚类结果进行评估:依据特定的评价标准对聚类的结果进行有效评估,评估聚类结果的优劣,以此对聚类分析过程进行进一步的改进和完善。

聚类的主要步骤可以用图来表示。

image.png


点击标题查阅往期内容


OQ3OTBOZD[)VF~{L(69]G70.png

Python用KShape对时间序列进行聚类和肘方法确定最优聚类数k可视化


左右滑动查看更多

01

%0K)2[BAH]Y{PSHX)EJ069H.png

02

}RUMJTJ9BR5H51Z1`R4VU4L.png

03

(WCFWWECUPCR8P~DTWD1A%V.png

04

N}[DFF857LX`TO%5]VIJ]GK.png



改进聚类分析中的数据类型及聚类准则函数

聚类算法的数据结构:数据矩阵、相异度矩阵。

相异度矩阵:相异度矩阵用来存储的是实体之间的差异性,n个实体的相异度矩阵表示为 n×n维的矩阵,用d(A,B)来表示实体A与实体B的相异性,一般来讲,是一种量化的表示方式,则含有n个实体的集合X={x1,x2,…,xn}的相异度矩阵表示如下:

KIURMKHP57DLAME1}T{G_%0.png

d(i,j)表示对象i和j之间的相异性的量化表示,通常它是一个非负的数值,当对象i和j 越相似或接近,其值越接近0;两个对象越不同,其值越大。并且有d(i,j)=d(j,i),d(i,i)=0。目前最常用的的相似性度量函数为欧式距离。

在MATLAB中应用K-MEANS算法

数据的预处理

本研究的数据是某高校学生的期末考试成绩,成绩表包括以下字段:x1为“电子商务”科目成绩,x2为“C语言概论”科目基础知识。其中,数据已经经过标准化和中心化的预处理:

(1)补充缺失值。对退学、转学、休学、缺考造成的数据缺失采用平均值法,以该科目的平均分数填充。

(2)规范化数据。运用最小-最大规范化方法对数据进行规范化处理,将数据映射到[0,1]区间,计算公式如下:

0(BHB2BDZ_323B[U5KKW8BA.png

过程及结果分析

(1)读取数据

选择MATLAB的Data.mat,通过ImpoMatlabt Files,将所有数据读入。

load('data1.mat')
k = 6;
figure;
%数据标准化
data = zeros(size(data1));
[data(:,1) me(1) va(1)] = dataNormalization(data1(:,1))

(2)K-Means 模型设置

1)NumbeRs of clusteR:制定生成的聚类数目,这里设置为3.

2)定义了分割数据集,选择训练数据集作为建模数据集,并利用测试数据集对模型进行评价。

[idx c] = kmeansOfMy(data,k);
c = dataRecovery(c,me,va);
%画出各个区域中的散点
count = 0;
for i = 1 : k
    if i == 1
         plot(data1(idx == i,1),data1(idx == 1,2),'r*');
    elseif i == 2
         plot(data1(idx == i,1),data1(idx == i,2),'g*');
    elseif i == 3

]%J%E$XWZ2U$EW%DM~7P]MN.png

(3)执行和输出

设置完成后,选中Execute 按钮,即可得到改进聚类执行并观察到结果。

%kOfVertex = randKOfVertex(k);
kOfVertex = electedInitialCentroid(k);
for i = 1 : size(data,1)
        index(i) = minOfDistans(i,kOfVertex);

可以以图表的形式来显示模型的统计信息以及各个属性在各簇中的分布信息,结果如下图所示。

5{1@J526{CBE7S(1$J9}UF9.png

(4)聚类结果

结果表明:簇1中的学生都是考试成绩中等的,簇2中的学生考试成绩较高,簇2中的学生考试成绩较差,可见,大部分学生的期末考试成绩处于中等水平;各变量在各簇中的显著程度均较大,表明学生对各科目的学习分化程度较高,差异显著。

 

参考文献

[1] 贺玲, 吴玲达, 蔡益朝. 数据挖掘中的聚类算法综述[J]. 计算机应用研究, 2007(1).

[2] 蒋帅. K-均值聚类算法研究[D]. 陕西师范大学, 2010.

[3] 周涓, 熊忠阳, 张玉芳, 等. 基于最大最小距离法的多中心聚类算法[J]. 计算机应用, 2006, 26(6).

[4] A.K.Jain, MATLAB.C.Dubes. AlgoMatlabithms foMatlab ClusteMatlabing Data [J]. PMatlabentice-Hall Advanced MATLABefeMatlabence SeMatlabies, 1988(1).

相关文章
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
15天前
|
算法 数据安全/隐私保护
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
本项目实现了一种基于Logistic Map混沌序列的数字信息加解密算法,使用MATLAB2022A开发并包含GUI操作界面。支持对文字、灰度图像、彩色图像和语音信号进行加密与解密处理。核心程序通过调整Logistic Map的参数生成伪随机密钥序列,确保加密的安全性。混沌系统的不可预测性和对初值的敏感依赖性是该算法的核心优势。示例展示了彩色图像、灰度图像、语音信号及文字信息的加解密效果,运行结果清晰准确,且完整程序输出无水印。
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
|
15天前
|
算法
基于PSO粒子群优化的多无人机路径规划matlab仿真,对比WOA优化算法
本程序基于粒子群优化(PSO)算法实现多无人机路径规划,并与鲸鱼优化算法(WOA)进行对比。使用MATLAB2022A运行,通过四个无人机的仿真,评估两种算法在能耗、复杂度、路径规划效果及收敛曲线等指标上的表现。算法原理源于1995年提出的群体智能优化,模拟鸟群觅食行为,在搜索空间中寻找最优解。环境建模采用栅格或几何法,考虑避障、速度限制等因素,将约束条件融入适应度函数。程序包含初始化粒子群、更新速度与位置、计算适应度值、迭代优化等步骤,最终输出最优路径。
|
15天前
|
机器学习/深度学习 数据采集 并行计算
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于TCN(Temporal Convolutional Network)与WOA(Whale Optimization Algorithm)的时间序列预测算法。TCN通过扩张卷积捕捉时间序列长距离依赖关系,结合批归一化和激活函数提取特征;WOA用于优化TCN网络参数,提高预测精度。算法流程包括数据归一化、种群初始化、适应度计算及参数更新等步骤。程序基于Matlab2022a/2024b开发,完整版含详细中文注释与操作视频,运行效果无水印展示。适用于函数优化、机器学习调参及工程设计等领域复杂任务。
|
15天前
|
机器学习/深度学习 算法 数据可视化
基于Qlearning强化学习的机器人迷宫路线搜索算法matlab仿真
本内容展示了基于Q-learning算法的机器人迷宫路径搜索仿真及其实现过程。通过Matlab2022a进行仿真,结果以图形形式呈现,无水印(附图1-4)。算法理论部分介绍了Q-learning的核心概念,包括智能体、环境、状态、动作和奖励,以及Q表的构建与更新方法。具体实现中,将迷宫抽象为二维网格世界,定义起点和终点,利用Q-learning训练机器人找到最优路径。核心程序代码实现了多轮训练、累计奖励值与Q值的可视化,并展示了机器人从起点到终点的路径规划过程。
50 0
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于遗传优化GRNN和Hog特征提取的交通标志识别算法matlab仿真
本内容展示了一种基于遗传算法(GA)优化的广义回归神经网络(GRNN)与HOG特征提取的交通标志识别算法。通过算法运行效果预览,对比了GRNN与GA-GRNN在不同测试中的表现,并提供无水印完整程序运行结果。开发环境为Matlab 2022a,核心代码附有详细中文注释及操作视频。 理论部分涵盖HOG特征提取、GRNN模型原理及遗传算法优化GRNN平滑因子的关键技术。HOG通过梯度方向直方图描述目标形状,具有旋转不变性和光照鲁棒性;GRNN实现非线性回归,结合遗传算法优化参数以提升性能。此方法在精度、效率和鲁棒性间取得良好平衡,适用于实时车载系统,未来可探索HOG与CNN特征融合以应对复杂场景。
|
15天前
|
算法 5G 定位技术
高低频混合组网系统中基于地理位置信息的信道测量算法matlab仿真
本内容展示了一种基于地理位置信息的信道测量算法,适用于现代蜂窝系统,尤其在毫米波通信中,波束对准成为关键步骤。算法通过信号传播模型和地理信息实现信道状态测量,并优化误差提升准确性。完整程序基于Matlab2022a运行,无水印效果,核心代码配有中文注释及操作视频,适合深入学习与应用开发。
|
15天前
|
算法 数据安全/隐私保护
基于SA模拟退火算法的多车辆TSP问题求解matlab仿真
本程序基于模拟退火(SA)算法求解多车辆旅行商问题(VRPMTS),使用MATLAB2022A实现。程序为三辆车规划最短路径,输出路线规划图与SA收敛曲线。核心代码通过迭代调整温度参数和接受概率,避免陷入局部最优,逐步逼近全局最优解。算法原理包括初始高温允许劣质解、逐步降温探索解空间,并结合邻居解生成方法优化路径。适用于物流配送、路径规划等领域,具有较高实用价值。
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本内容涵盖基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测算法。完整程序运行效果无水印,适用于Matlab2022a版本。核心代码配有详细中文注释及操作视频。理论部分阐述了传统方法(如ARIMA)在非线性预测中的局限性,以及TCN结合PSO优化超参数的优势。模型由因果卷积层和残差连接组成,通过迭代训练与评估选择最优超参数,最终实现高精度预测,广泛应用于金融、气象等领域。
|
16天前
|
算法 安全 数据安全/隐私保护
基于AES的图像加解密算法matlab仿真,带GUI界面
本程序基于AES算法实现图像的加解密功能,并提供MATLAB GUI界面操作,支持加密与解密。运行环境为MATLAB 2022A,测试结果无水印。核心代码通过按钮回调函数完成AES加密与解密流程,包括字节替换、行移位、列混淆及密钥加等步骤。解密过程为加密逆向操作,确保数据安全性与完整性。完整程序结合128位块加密与可选密钥长度,适用于图像信息安全场景。