MATLAB用改进K-Means(K-均值)聚类算法数据挖掘高校学生的期末考试成绩

简介: MATLAB用改进K-Means(K-均值)聚类算法数据挖掘高校学生的期末考试成绩

全文链接:http://tecdat.cn/?p=30832


本文首先阐明了聚类算法的基本概念,介绍了几种比较典型的聚类算法,然后重点阐述了K-均值算法的基本思想,对K-均值算法的优缺点做了分析,回顾了对K-均值改进方法的文献,最后在Matlab中应用了改进的K-均值算法对数据进行了分析点击文末“阅读原文”获取完整代码数据


常用的聚类算法

常用的聚类算法有:K-MEANS、K-MEDOIDS、BIRCH、CURE、DBSCAN、STING。

相关视频

image.png

image.png

主要聚类算法分类

类别 包括的主要算法
划分的方法 K-MEANS算法(K平均)、K-MEDOIDS算法(K中心点)、CLARANS算法(基于选择的算法)
层次的方法 BIRCH算法(平衡迭代规约和聚类)、CURE算法(代表点聚类)、CHAMELEON算法(动态模型)
基于密度的方法 DBSCAN算法(基于高密度连接区域)、DENCLUE算法(密度分布函数)、OPTICS算法(对象排序识别)
基于网络的方法 STING算法(统计信息网络)、CLIQUE算法(聚类高维空间)、WAVE-CLUSTER算法(小波变换)
基于模型的方法 统计学方法、神经网络方法

聚类算法的性能比较

聚类算法 适合数据类型 算法效率 发现的聚类形状 能否处理大数据集 是否受初始聚类中心影响 对异常数据敏感性 对输入数据顺序敏感性
K-MEANS 数值型 较高 凸形或球形 非常敏感 不敏感
K-MEDOIDS 数值型 一般 凸形或球形 不敏感 不敏感
BIRCH 数值型 凸形或球形 不敏感 不太敏感
CURE 数值型 较高 任意形状 不敏感 不太敏感
DBSCAN 数值型 一般 任意形状 敏感 敏感
STING 数值型 任意形状 一般 不敏感

 

由表可得到以下结论:1)大部分常用聚类算法只适合处理数值型数据;2)若考虑算法效率、初始聚类中心影响性和对异常数据敏感性,其中BIRCH算法、CURE算法以及STING算法能得到较好的结果;3)CURE算法、DBSCAN算法以及STING算法能发现任意形状的聚类。

改进聚类的主要步骤

聚类的主要步骤由以下几个方面组成:

(1)数据预处理:根据聚类分析的要求,对输入数据集进行特征标准化及降维等操作。

(2)特征选择及特征提取:将由数据预处理过程得到的最初始的特征中的最有效的特征选择出来,并将选取出来的最有效特征存放于特定的向量中,然后对这些有效特征进行相应的转换,得到新的有效突出特征。

(3)聚类(分组):根据需要选择合适的相似性度量函数对数据集中的数据对象相似程度进行度量,以此进行数据对象的聚类(分组)。

(4)对聚类结果进行评估:依据特定的评价标准对聚类的结果进行有效评估,评估聚类结果的优劣,以此对聚类分析过程进行进一步的改进和完善。

聚类的主要步骤可以用图来表示。

image.png


点击标题查阅往期内容


OQ3OTBOZD[)VF~{L(69]G70.png

Python用KShape对时间序列进行聚类和肘方法确定最优聚类数k可视化


左右滑动查看更多

01

%0K)2[BAH]Y{PSHX)EJ069H.png

02

}RUMJTJ9BR5H51Z1`R4VU4L.png

03

(WCFWWECUPCR8P~DTWD1A%V.png

04

N}[DFF857LX`TO%5]VIJ]GK.png



改进聚类分析中的数据类型及聚类准则函数

聚类算法的数据结构:数据矩阵、相异度矩阵。

相异度矩阵:相异度矩阵用来存储的是实体之间的差异性,n个实体的相异度矩阵表示为 n×n维的矩阵,用d(A,B)来表示实体A与实体B的相异性,一般来讲,是一种量化的表示方式,则含有n个实体的集合X={x1,x2,…,xn}的相异度矩阵表示如下:

KIURMKHP57DLAME1}T{G_%0.png

d(i,j)表示对象i和j之间的相异性的量化表示,通常它是一个非负的数值,当对象i和j 越相似或接近,其值越接近0;两个对象越不同,其值越大。并且有d(i,j)=d(j,i),d(i,i)=0。目前最常用的的相似性度量函数为欧式距离。

在MATLAB中应用K-MEANS算法

数据的预处理

本研究的数据是某高校学生的期末考试成绩,成绩表包括以下字段:x1为“电子商务”科目成绩,x2为“C语言概论”科目基础知识。其中,数据已经经过标准化和中心化的预处理:

(1)补充缺失值。对退学、转学、休学、缺考造成的数据缺失采用平均值法,以该科目的平均分数填充。

(2)规范化数据。运用最小-最大规范化方法对数据进行规范化处理,将数据映射到[0,1]区间,计算公式如下:

0(BHB2BDZ_323B[U5KKW8BA.png

过程及结果分析

(1)读取数据

选择MATLAB的Data.mat,通过ImpoMatlabt Files,将所有数据读入。

load('data1.mat')
k = 6;
figure;
%数据标准化
data = zeros(size(data1));
[data(:,1) me(1) va(1)] = dataNormalization(data1(:,1))

(2)K-Means 模型设置

1)NumbeRs of clusteR:制定生成的聚类数目,这里设置为3.

2)定义了分割数据集,选择训练数据集作为建模数据集,并利用测试数据集对模型进行评价。

[idx c] = kmeansOfMy(data,k);
c = dataRecovery(c,me,va);
%画出各个区域中的散点
count = 0;
for i = 1 : k
    if i == 1
         plot(data1(idx == i,1),data1(idx == 1,2),'r*');
    elseif i == 2
         plot(data1(idx == i,1),data1(idx == i,2),'g*');
    elseif i == 3

]%J%E$XWZ2U$EW%DM~7P]MN.png

(3)执行和输出

设置完成后,选中Execute 按钮,即可得到改进聚类执行并观察到结果。

%kOfVertex = randKOfVertex(k);
kOfVertex = electedInitialCentroid(k);
for i = 1 : size(data,1)
        index(i) = minOfDistans(i,kOfVertex);

可以以图表的形式来显示模型的统计信息以及各个属性在各簇中的分布信息,结果如下图所示。

5{1@J526{CBE7S(1$J9}UF9.png

(4)聚类结果

结果表明:簇1中的学生都是考试成绩中等的,簇2中的学生考试成绩较高,簇2中的学生考试成绩较差,可见,大部分学生的期末考试成绩处于中等水平;各变量在各簇中的显著程度均较大,表明学生对各科目的学习分化程度较高,差异显著。

 

参考文献

[1] 贺玲, 吴玲达, 蔡益朝. 数据挖掘中的聚类算法综述[J]. 计算机应用研究, 2007(1).

[2] 蒋帅. K-均值聚类算法研究[D]. 陕西师范大学, 2010.

[3] 周涓, 熊忠阳, 张玉芳, 等. 基于最大最小距离法的多中心聚类算法[J]. 计算机应用, 2006, 26(6).

[4] A.K.Jain, MATLAB.C.Dubes. AlgoMatlabithms foMatlab ClusteMatlabing Data [J]. PMatlabentice-Hall Advanced MATLABefeMatlabence SeMatlabies, 1988(1).

相关文章
|
1月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
190 0
|
1月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
143 2
|
2月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
194 3
|
1月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
137 8
|
1月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
146 8
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
1月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
1月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
122 0
|
1月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
112 0
|
1月前
|
存储 监控 并行计算
目标跟踪中常用点迹航迹数据关联算法的MATLAB实现
通过计算测量点与预测点之间的欧氏距离,选择最近邻点进行关联,适用于单目标跟踪场景。

热门文章

最新文章

下一篇
oss云网关配置