MATLAB用改进K-Means(K-均值)聚类算法数据挖掘高校学生的期末考试成绩

简介: MATLAB用改进K-Means(K-均值)聚类算法数据挖掘高校学生的期末考试成绩

全文链接:http://tecdat.cn/?p=30832


本文首先阐明了聚类算法的基本概念,介绍了几种比较典型的聚类算法,然后重点阐述了K-均值算法的基本思想,对K-均值算法的优缺点做了分析,回顾了对K-均值改进方法的文献,最后在Matlab中应用了改进的K-均值算法对数据进行了分析点击文末“阅读原文”获取完整代码数据


常用的聚类算法

常用的聚类算法有:K-MEANS、K-MEDOIDS、BIRCH、CURE、DBSCAN、STING。

相关视频

image.png

image.png

主要聚类算法分类

类别 包括的主要算法
划分的方法 K-MEANS算法(K平均)、K-MEDOIDS算法(K中心点)、CLARANS算法(基于选择的算法)
层次的方法 BIRCH算法(平衡迭代规约和聚类)、CURE算法(代表点聚类)、CHAMELEON算法(动态模型)
基于密度的方法 DBSCAN算法(基于高密度连接区域)、DENCLUE算法(密度分布函数)、OPTICS算法(对象排序识别)
基于网络的方法 STING算法(统计信息网络)、CLIQUE算法(聚类高维空间)、WAVE-CLUSTER算法(小波变换)
基于模型的方法 统计学方法、神经网络方法

聚类算法的性能比较

聚类算法 适合数据类型 算法效率 发现的聚类形状 能否处理大数据集 是否受初始聚类中心影响 对异常数据敏感性 对输入数据顺序敏感性
K-MEANS 数值型 较高 凸形或球形 非常敏感 不敏感
K-MEDOIDS 数值型 一般 凸形或球形 不敏感 不敏感
BIRCH 数值型 凸形或球形 不敏感 不太敏感
CURE 数值型 较高 任意形状 不敏感 不太敏感
DBSCAN 数值型 一般 任意形状 敏感 敏感
STING 数值型 任意形状 一般 不敏感

 

由表可得到以下结论:1)大部分常用聚类算法只适合处理数值型数据;2)若考虑算法效率、初始聚类中心影响性和对异常数据敏感性,其中BIRCH算法、CURE算法以及STING算法能得到较好的结果;3)CURE算法、DBSCAN算法以及STING算法能发现任意形状的聚类。

改进聚类的主要步骤

聚类的主要步骤由以下几个方面组成:

(1)数据预处理:根据聚类分析的要求,对输入数据集进行特征标准化及降维等操作。

(2)特征选择及特征提取:将由数据预处理过程得到的最初始的特征中的最有效的特征选择出来,并将选取出来的最有效特征存放于特定的向量中,然后对这些有效特征进行相应的转换,得到新的有效突出特征。

(3)聚类(分组):根据需要选择合适的相似性度量函数对数据集中的数据对象相似程度进行度量,以此进行数据对象的聚类(分组)。

(4)对聚类结果进行评估:依据特定的评价标准对聚类的结果进行有效评估,评估聚类结果的优劣,以此对聚类分析过程进行进一步的改进和完善。

聚类的主要步骤可以用图来表示。

image.png


点击标题查阅往期内容


OQ3OTBOZD[)VF~{L(69]G70.png

Python用KShape对时间序列进行聚类和肘方法确定最优聚类数k可视化


左右滑动查看更多

01

%0K)2[BAH]Y{PSHX)EJ069H.png

02

}RUMJTJ9BR5H51Z1`R4VU4L.png

03

(WCFWWECUPCR8P~DTWD1A%V.png

04

N}[DFF857LX`TO%5]VIJ]GK.png



改进聚类分析中的数据类型及聚类准则函数

聚类算法的数据结构:数据矩阵、相异度矩阵。

相异度矩阵:相异度矩阵用来存储的是实体之间的差异性,n个实体的相异度矩阵表示为 n×n维的矩阵,用d(A,B)来表示实体A与实体B的相异性,一般来讲,是一种量化的表示方式,则含有n个实体的集合X={x1,x2,…,xn}的相异度矩阵表示如下:

KIURMKHP57DLAME1}T{G_%0.png

d(i,j)表示对象i和j之间的相异性的量化表示,通常它是一个非负的数值,当对象i和j 越相似或接近,其值越接近0;两个对象越不同,其值越大。并且有d(i,j)=d(j,i),d(i,i)=0。目前最常用的的相似性度量函数为欧式距离。

在MATLAB中应用K-MEANS算法

数据的预处理

本研究的数据是某高校学生的期末考试成绩,成绩表包括以下字段:x1为“电子商务”科目成绩,x2为“C语言概论”科目基础知识。其中,数据已经经过标准化和中心化的预处理:

(1)补充缺失值。对退学、转学、休学、缺考造成的数据缺失采用平均值法,以该科目的平均分数填充。

(2)规范化数据。运用最小-最大规范化方法对数据进行规范化处理,将数据映射到[0,1]区间,计算公式如下:

0(BHB2BDZ_323B[U5KKW8BA.png

过程及结果分析

(1)读取数据

选择MATLAB的Data.mat,通过ImpoMatlabt Files,将所有数据读入。

load('data1.mat')
k = 6;
figure;
%数据标准化
data = zeros(size(data1));
[data(:,1) me(1) va(1)] = dataNormalization(data1(:,1))

(2)K-Means 模型设置

1)NumbeRs of clusteR:制定生成的聚类数目,这里设置为3.

2)定义了分割数据集,选择训练数据集作为建模数据集,并利用测试数据集对模型进行评价。

[idx c] = kmeansOfMy(data,k);
c = dataRecovery(c,me,va);
%画出各个区域中的散点
count = 0;
for i = 1 : k
    if i == 1
         plot(data1(idx == i,1),data1(idx == 1,2),'r*');
    elseif i == 2
         plot(data1(idx == i,1),data1(idx == i,2),'g*');
    elseif i == 3

]%J%E$XWZ2U$EW%DM~7P]MN.png

(3)执行和输出

设置完成后,选中Execute 按钮,即可得到改进聚类执行并观察到结果。

%kOfVertex = randKOfVertex(k);
kOfVertex = electedInitialCentroid(k);
for i = 1 : size(data,1)
        index(i) = minOfDistans(i,kOfVertex);

可以以图表的形式来显示模型的统计信息以及各个属性在各簇中的分布信息,结果如下图所示。

5{1@J526{CBE7S(1$J9}UF9.png

(4)聚类结果

结果表明:簇1中的学生都是考试成绩中等的,簇2中的学生考试成绩较高,簇2中的学生考试成绩较差,可见,大部分学生的期末考试成绩处于中等水平;各变量在各簇中的显著程度均较大,表明学生对各科目的学习分化程度较高,差异显著。

 

参考文献

[1] 贺玲, 吴玲达, 蔡益朝. 数据挖掘中的聚类算法综述[J]. 计算机应用研究, 2007(1).

[2] 蒋帅. K-均值聚类算法研究[D]. 陕西师范大学, 2010.

[3] 周涓, 熊忠阳, 张玉芳, 等. 基于最大最小距离法的多中心聚类算法[J]. 计算机应用, 2006, 26(6).

[4] A.K.Jain, MATLAB.C.Dubes. AlgoMatlabithms foMatlab ClusteMatlabing Data [J]. PMatlabentice-Hall Advanced MATLABefeMatlabence SeMatlabies, 1988(1).

相关文章
|
16天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
2天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
9天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
18天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
9天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
15天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
19天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
12天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
18天前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真
本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。
31 8
|
17天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
下一篇
DataWorks