【Matlab智能算法】RBF神经网络-遗传算法(RBF-GA)函数极值寻优——非线性函数求极值

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: 【Matlab智能算法】RBF神经网络-遗传算法(RBF-GA)函数极值寻优——非线性函数求极值


1.背景条件

要求:对于未知模型(函数表达式未知)求解极值。

条件:已知模型的一些输入输出数据。

程序的示例是根据用神经网络遗传算法寻优非线性函数 y = x 1 2 + x 2 2 y = x_1^2+x_2^2y=x12+x22 的极值,输入参数有2个,输出参数有1个,易知函数有极小值0,极小值点为(0, 0)。已知的只有一些输入输出数据(用rand函数生成输入,然后代入表达式生成输出):

for i=1:4000
    input(i,:)=10*rand(1,2)-5;
    output(i)=input(i,1)^2+input(i,2)^2;
end

2.RBF神经网络函数说明

newrbe()

RBF神经网络参数设置函数(严格(exact)RBF网络函数)

函数形式:

net = newrbe(P,T,spread)

P:输入数据矩阵。

T:输出数据矩阵。

spread:径向基函数的扩展速度。默认为1。RBF神经网络和GRNN网络一样,都有一个 spread 参数,GRNN神经网络其实是RBF神经网络的一种变形。

例如:

net=newrbe(inputn,outputn,0.1)

newrbe()构建网络结构时,隐含层节点数与输入向量的个数是相同的。

newrbe()

近似(approximate)RBF网络函数

函数形式:

[net,tr]=newrb(P,T,GOAL,SPREAD,MN,DF)

P: 由输入向量构成的 R * Q 矩阵。

T: 由期望输出向量构成的 S * Q 维矩阵。

Goal:标量,记为均方误差目标(Mean Squard Error Goal),默认值为0;

spread:标量,记为基函数的扩散速度,默认值为1;

MN:神经网络中各神经元的隐含节点最大数目,默认值为Q

DF:两次显示之间所添加的神经元个数,默认值为25;

例如:

net=newrb(inputn,outputn)

用 newrb() 创建 RBF网络是一个不断尝试的过程,在创建过程中,需要不断增加中间层神经元和个数,直到网络的输出误差满足预先设定的值为止。

radbas()

径向基传递函数

A=radbas(N)

其中N是输入(列)向量的SQ维矩阵,A为函数返回SQ矩阵,表示对N的计算结果,即N中的元素都是通过径向基函数得到的。

3.近似RBF神经网络

%% 清空环境变量
clc
tic
%% 载入数据
load data
%从1到4000间随机排序
k=rand(1,4000);
[m,n]=sort(k);
%划分训练数据和预测数据
input_train=input(n(1:3900),:)';
output_train=output(n(1:3900),:)';
input_test=input(n(3901:4000),:)';
output_test=output(n(3901:4000),:)';
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%% RBF网络训练
% %初始化网络结构
net=newrb(inputn,outputn); % 近似RBF网络
%% RBF网络预测
%预测数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
%网络预测输出
an=sim(net,inputn_test);
%网络输出反归一化
RBFoutput=mapminmax('reverse',an,outputps);
%% 结果分析
error=output_test-RBFoutput;
errorsum=sum(abs(error))
toc
save data net inputps outputps

运行之后得到:(ctrl + C 中止)

当隐藏层神经元个数为50的时候,误差已经很小了。

4.完整代码

data.m

用于生成神经网络拟合的原始数据。

for i=1:4000
    input(i,:)=10*rand(1,2)-5;
    output(i)=input(i,1)^2+input(i,2)^2;
end
output=output';
save data input output

RBF.m

用函数输入输出数据训练RBF神经网络,使训练后的网络能够拟合非线性函数输出,保存训练好的网络用于计算个体适应度值。根据非线性函数方程随机得到该函数的4000组输入输出数据,存储于data中,其中input为函数输入数据,output为函数对应输出数据,从中随机抽取3900组训练数据训练网络,100组测试数据测试网络拟合性能。最后保存训练好的网络。

%% 清空环境变量
clc
tic
%% 载入数据
load data
%从1到4000间随机排序
k=rand(1,4000);
[m,n]=sort(k);
%划分训练数据和预测数据
input_train=input(n(1:3900),:)';
output_train=output(n(1:3900),:)';
input_test=input(n(3901:4000),:)';
output_test=output(n(3901:4000),:)';
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%% RBF网络训练
% %初始化网络结构
net=newrbe(inputn,outputn,0.1); % 严格RBF网络
%net=newrb(inputn,outputn); % 近似RBF网络
view(net)
%% RBF网络预测
%预测数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
%网络预测输出
an=sim(net,inputn_test);
%网络输出反归一化
RBFoutput=mapminmax('reverse',an,outputps);
%% 结果分析
error=output_test-RBFoutput;
errorsum=sum(abs(error))
figure(1);
plot(RBFoutput,':og');
hold on
plot(output_test,'-*');
legend('Predictive output','Expected output','fontsize',10);
title('RBF network output','fontsize',12);
xlabel("samples",'fontsize',12);
figure(2);
plot(error,'-*');
title('RBF Neural network prediction error');
xlabel("samples",'fontsize',12);
figure(3);
plot(100*(output_test-RBFoutput)./output_test,'-*');
title('RBF Neural network prediction error percentage (%)');
xlabel("samples",'fontsize',12);
toc
save data net inputps outputps

Code.m

编码成染色体。

function ret=Code(lenchrom,bound)
%本函数将变量编码成染色体,用于随机初始化一个种群
% lenchrom   input : 染色体长度
% bound      input : 变量的取值范围
% ret        output: 染色体的编码值
flag=0;
while flag==0
    pick=rand(1,length(lenchrom));
    ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值,编码结果以实数向量存入ret中
    flag=test(lenchrom,bound,ret);     %检验染色体的可行性
end

fun.m

把训练好的RBF神经网络预测输出作为个体适应度值。

function fitness = fun(x)
% 函数功能:计算该个体对应适应度值
% x           input     个体
% fitness     output    个体适应度值
%
load data net inputps outputps
%数据归一化
x=x';
inputn_test=mapminmax('apply',x,inputps);
%网络预测输出
an=sim(net,inputn_test);
%网络输出反归一化
fitness=mapminmax('reverse',an,outputps);

对于求极小值的函数,适应度可以设为RBF网络预测结果,如果需要求极大值,可以对适应度取反。

Select.m

选择操作采用轮盘赌法从种群中选择适应度好的个体组成新种群。

function ret=select(individuals,sizepop)
% 本函数对每一代种群中的染色体进行选择,以进行后面的交叉和变异
% individuals input  : 种群信息
% sizepop     input  : 种群规模
% ret         output : 经过选择后的种群
fitness1=1./individuals.fitness;
sumfitness=sum(fitness1);
sumf=fitness1./sumfitness;
index=[]; 
for i=1:sizepop   %转sizepop次轮盘
    pick=rand;
    while pick==0    
        pick=rand;        
    end
    for i=1:sizepop    
        pick=pick-sumf(i);        
        if pick<0        
            index=[index i];            
            break;  %寻找落入的区间,此次转轮盘选中了染色体i,注意:在转sizepop次轮盘的过程中,有可能会重复选择某些染色体
        end
    end
end
individuals.chrom=individuals.chrom(index,:);
individuals.fitness=individuals.fitness(index);
ret=individuals;

Cross.m

交叉操作从种群中选择两个个体,按一定概率交叉得到新个体。

function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss                input  : 交叉概率
% lenchrom              input  : 染色体的长度
% chrom     input  : 染色体群
% sizepop               input  : 种群规模
% ret                   output : 交叉后的染色体
 for i=1:sizepop  %每一轮for循环中,可能会进行一次交叉操作,染色体是随机选择的,交叉位置也是随机选择的,%但该轮for循环中是否进行交叉操作则由交叉概率决定(continue控制)
     % 随机选择两个染色体进行交叉
     pick=rand(1,2);
     while prod(pick)==0
         pick=rand(1,2);
     end
     index=ceil(pick.*sizepop);
     % 交叉概率决定是否进行交叉
     pick=rand;
     while pick==0
         pick=rand;
     end
     if pick>pcross
         continue;
     end
     flag=0;
     while flag==0
         % 随机选择交叉位
         pick=rand;
         while pick==0
             pick=rand;
         end
         pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同
         pick=rand; %交叉开始
         v1=chrom(index(1),pos);
         v2=chrom(index(2),pos);
         chrom(index(1),pos)=pick*v2+(1-pick)*v1;
         chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束
         flag1=test(lenchrom,bound,chrom(index(1),:));  %检验染色体1的可行性
         flag2=test(lenchrom,bound,chrom(index(2),:));  %检验染色体2的可行性
         if   flag1*flag2==0
             flag=0;
         else flag=1;
         end    %如果两个染色体不是都可行,则重新交叉
     end
 end
ret=chrom;

test.m

检验染色体的可行性。

function flag=test(lenchrom,bound,code)
% lenchrom   input : 染色体长度
% bound      input : 变量的取值范围
% code       output: 染色体的编码值
x=code; %先解码
flag=1;
if (x(1)<bound(1,1))&&(x(2)<bound(2,1))&&(x(1)>bound(1,2))&&(x(2)>bound(2,2))
    flag=0;
end

Mutation.m

变异操作从种群中随机选择一个个体,按一定概率变异得到新个体。

function ret=Mutation(pmutation,lenchrom,chrom,sizepop,pop,bound)
% 本函数完成变异操作
% pcorss                input  : 变异概率
% lenchrom              input  : 染色体长度
% chrom     input  : 染色体群
% sizepop               input  : 种群规模
% opts                  input  : 变异方法的选择
% pop                   input  : 当前种群的进化代数和最大的进化代数信息
% ret                   output : 变异后的染色体
for i=1:sizepop   %每一轮for循环中,可能会进行一次变异操作,染色体是随机选择的,变异位置也是随机选择的,
    %但该轮for循环中是否进行变异操作则由变异概率决定(continue控制)
    % 随机选择一个染色体进行变异
    pick=rand;
    while pick==0
        pick=rand;
    end
    index=ceil(pick*sizepop);
    % 变异概率决定该轮循环是否进行变异
    pick=rand;
    if pick>pmutation
        continue;
    end
    flag=0;
    while flag==0
        % 变异位置
        pick=rand;
        while pick==0      
            pick=rand;
        end
        pos=ceil(pick*sum(lenchrom));  %随机选择了染色体变异的位置,即选择了第pos个变量进行变异
        v=chrom(i,pos);        
        v1=v-bound(pos,1);        
        v2=bound(pos,2)-v;        
        pick=rand; %变异开始        
        if pick>0.5
            delta=v2*(1-pick^((1-pop(1)/pop(2))^2));
            chrom(i,pos)=v+delta;
        else
            delta=v1*(1-pick^((1-pop(1)/pop(2))^2));
            chrom(i,pos)=v-delta;
        end   %变异结束
        flag=test(lenchrom,bound,chrom(i,:));     %检验染色体的可行性
    end
end
ret=chrom;

Genetic.m

%% 清空环境变量
clc
% clear
%% 初始化遗传算法参数
%初始化参数
maxgen=100;                         %进化代数,即迭代次数
sizepop=20;                        %种群规模
pcross=[0.4];                       %交叉概率选择,0和1之间
pmutation=[0.2];                    %变异概率选择,0和1之间
lenchrom=[1 1];          %每个变量的字串长度,如果是浮点变量,则长度都为1
bound=[-5 5;-5 5];  %数据范围
individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]);  %将种群信息定义为一个结构体
avgfitness=[];                      %每一代种群的平均适应度
bestfitness=[];                     %每一代种群的最佳适应度
bestchrom=[];                       %适应度最好的染色体
%% 初始化种群计算适应度值
% 初始化种群
for i=1:sizepop
    %随机产生一个种群
    individuals.chrom(i,:)=Code(lenchrom,bound);   
    x=individuals.chrom(i,:);
    %计算适应度
    individuals.fitness(i)=fun(x);   %染色体的适应度
end
%找最好的染色体
[bestfitness bestindex]=min(individuals.fitness);
bestchrom=individuals.chrom(bestindex,:);  %最好的染色体
avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[avgfitness bestfitness]; 
%% 迭代寻优
% 进化开始
for i=1:maxgen
    i
    % 选择
    individuals=Select(individuals,sizepop); 
    avgfitness=sum(individuals.fitness)/sizepop;
    % 交叉
    individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound);
    % 变异
    individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,[i maxgen],bound);
    % 计算适应度 
    for j=1:sizepop
        x=individuals.chrom(j,:); %解码
        individuals.fitness(j)=fun(x);   
    end
  %找到最小和最大适应度的染色体及它们在种群中的位置
    [newbestfitness,newbestindex]=min(individuals.fitness);
    [worestfitness,worestindex]=max(individuals.fitness);
    % 代替上一次进化中最好的染色体
    if bestfitness>newbestfitness
        bestfitness=newbestfitness;
        bestchrom=individuals.chrom(newbestindex,:);
    end
    individuals.chrom(worestindex,:)=bestchrom;
    individuals.fitness(worestindex)=bestfitness;
    avgfitness=sum(individuals.fitness)/sizepop;
    trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束
%% 结果分析
[r c]=size(trace);
plot([1:r]',trace(:,2),'r-');
title('适应度曲线','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);
disp('适应度                   变量');
x=bestchrom;
% 窗口显示
disp([bestfitness x]);

5.代码使用说明

上述代码运行顺序

data.m 生成数据(如果已有 input output 数据可跳过),

RBF.m 进行RBF神经网络训练及函数拟合,

Genetic.m(主函数)利用遗传算法求极值。

求最大值的方法

上述代码用于求解最小值,对于求解最大值的需求,可以在适应度函数里面,对适应度计算结果求反,把求解最大值的问题转化为求解最小值的问题。

例如:对于非线性函数 y = − ( x 1 2 + x 2 2 ) + 4 y = -(x_1^2+x_2^2)+4y=(x12+x22)+4

for i=1:4000
    input(i,:)=10*rand(1,2)-5;
    output(i)=-(input(i,1)^2+input(i,2)^2)+4;
end

求最大值时,需要在 fun.m 里面,修改最后一行代码:

fitness=-mapminmax('reverse',an,outputps);

注意:每次运行结果不尽相同。

6.代码运行结果

y = x 1 2 + x 2 2 y = x_1^2+x_2^2y=x12+x22 求极小值

RBF神经网络拟合

运行RBF.m之后:

输出:

errorsum =
    0.0013
历时 9.232266 秒。

注意:每次运行结果不尽相同。

遗传算法寻优

运行主函数 Genetic.m之后:

输出:

...
i =
   100
适应度                   变量
   0.0001   -0.0042    0.0074
历时 20.067215 秒。

最终结果最优个体为(-0.0042,0.0074),适应度为 0.0001。

注意:每次运行结果不尽相同。

资源下载

下载链接

参考

《MATLAB神经网络30个案例分析》

相关文章
|
16天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
97 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
15天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
103 30
|
16天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
2天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
10天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
10天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
15天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
13天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
22天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
18天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
下一篇
DataWorks