MATLAB、R用改进Fuzzy C-means模糊C均值聚类算法的微博用户特征调研数据聚类研究

简介: MATLAB、R用改进Fuzzy C-means模糊C均值聚类算法的微博用户特征调研数据聚类研究

全文链接:http://tecdat.cn/?p=30766


本文就将采用改进Fuzzy C-means算法对基于用户特征的微博数据进行聚类分析。去年,我们为一位客户进行了短暂的咨询工作,他正在构建一个主要基于微博用户特征聚类研究的分析应用程序点击文末“阅读原文”获取完整代码数据


首先对聚类分析作系统介绍。其次对改进Fuzzy C-means算法进行文献回顾,对其概况、基本思想、算法进行详细介绍,再是应用了改进Fuzzy C-means算法,本文的数据是由所设计地软件在微博平台上获取的调研数据,最后得到相关结论和启示。


改进Fuzzy C-means 聚类算法是由 Steinhaus1955 年 Lloyd195年Ball&Hall1965 年 McQueen1967 年分别在各自的不同的科学研究领域独立的提出。改进Fuzzy C-means聚类算法被提出来后,在不同的学科领域被广泛研究和应用 并发展出大量不同的改进算法。它是研究比较多且应用比较广泛的一种基于划分的聚类算法。具有算法简单、易于实现、品于扩展,并且能够处理大数据集的特点。


聚类分析法概述


目前文献中存在着大量的聚类算法,大体上,聚类分析算法主要分成如下几种,图显示了一些主要的聚类算法的分类。


改进 Fuzzy C-means 算法


Fuzzy C-means算法概述

Fuzzy C-means算法是聚类算法中主要算法之一,它是一种基于划分的聚类算法,是最为经典的,同时也是使用最为广泛的一种基于划分的聚类算法,它属于基于距离的聚类算法。1967年,J.B.MacQueen提出的Fuzzy C-means算法是目前为止在工业和科学应用中一种极有影响的聚类技术。Fuzzy C-means 算法实现非常简单,运算效率也非常的高,适合对大型数据集进行分析处理。缺点是聚类结果不能重复,聚类结果跟初始点的选择有很大的关系,且不能作用于非凸集的数据。Fuzzy C-means算法对类球形且大小差别不大的类簇有很好的表现,但不能发现形状任意和大小差别很大的类簇,且聚类结果易受噪声数据影响。


应用


为了进一步验证改进Fuzzy C-means算法,本文将一批微博数据,通过根据微博用户特征属性对其进行聚类,并得出结论。


数据采集


新浪微博,作为中国的较大的用户使用较受欢迎的微博使用平台之一,从其平台上抽取的微博一定程度上可以反映国内微博平台用户的好友圈子情况。本文收集了发布微博用户特征数据,借鉴已有的相关研究和理论,进一步对数据进行标准化,数据中指标的取值如表所示。

指标 取值范围
您的朋友中大部分属于 同性或异性
你觉得自己个性如何 内向或者开朗
你是否愿意和兴趣相投的人成为朋友 愿意或者不愿意
您一般选择交什么样的朋友 0或1
你是否经常参与学生会或者社团组织的活动 经常或者偶尔

根据本文需求,采用编程软件在新浪微博平台上收集到的相关数据,具体样本实例如图所示,其中,对数据进行标准化


改进 Fuzzy C-means


本文采用MATLAB软件对数据进行改进Fuzzy C-means聚类分析。

数据挖掘是一个三级过程: 读入数据:通过一系列操作运行数据:把数据送到目的地。操作的这个顺序被称为数据流,通过每次操作数据流都会随着相关操作发生相关变化,最后,令那些目标数据输出一个模型或者可视化的结果。在MATLAB中,所有流程都与创建和修改数据流有关。本文具体过程如图所示。

仿真结果

具体结果如图所示,将该数据集分为了三类。

[center,U,obj_fcn] =FCMClu(data,4); 
plot(data(:,1), data(:,2),'o'); 
hold on; 
index1 = find(U(1,:) == maxU); 
index2 = find(U(2,:) == maxU);

改进Fuzzy C-means算法将该样本集分为三类,其中最多的为cluster-3,其次是cluster-2,再者是cluster-1。为了验证该结果的可行性,又采用了R统计软件对样本进行了聚类分析。


点击标题查阅往期内容


数据分享|R语言分析上海空气质量指数数据:kmean聚类、层次聚类、时间序列分析:arima模型、指数平滑法


01

02

03

04

具体代码如下所示:

> x=read.table("clipboard"):
> c<-hclust(dist(x),"single")
> plot(c):

得到聚类结果如图所示。


结论


本文研究了数据挖掘的研究背景与意义,讨论了聚类算法的各种基本理论包括聚类的形式化描述和定义,聚类中的数据类型和数据结果,聚类的相似性度量和准则函数等。同时也探讨学习了基于划分的聚类方法的典型的聚类方法。本文重点集中学习了研究了 改进Fuzzy C-means聚类算法的思想、原理以及该算法的优缺点。并运用改进Fuzzy C-means算法对所采集的数据进行聚类分析,深化了对该算法的理解。

但是本文也存在非常多的不足,例如未对较多的对改进Fuzzy C-means的改进算法作深刻剖析,对改进Fuzzy C-means实验的结果分析还并不到位。在后期中,这些都是值得深刻挖掘的。

 

参考文献

[1] 中国互联网络信息中心(CNNIC).第33次中国互联网络发展状况统计报告[EB/OL].

[2] 郭宇红,童云海,唐世渭等.数据库中的知识隐藏 [ J ].软件学报,2007, 11 (18) : 278222797.

[3] hehroz S.Khan,Amir Ahmad.Cluster center initialization algorithm for Fuzzy C-means clustering[J].Pattern Recognition Letters 25(2004): 1293-1302.

[4] 王春风,唐拥政.结合近邻和密度思想的K-均值算法的研究[J] 计算机工程应用.2011 年,47(19).147-149.

相关文章
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
3天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
5天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
28 10
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
25天前
|
机器学习/深度学习 人工智能 算法
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题
《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566
69 13
|
1天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
26 14
|
1月前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。