m基于GA-CNN遗传优化卷积神经网络的手势识别算法matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: m基于GA-CNN遗传优化卷积神经网络的手势识别算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

CNN训练结果

c3c0d368098ff33e3cfaf970db377288_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

GA优化之后的CNN训练结果
d05455327c9f61cfc50e6a5e51e0ae47_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

GA优化过程得到的均值收敛过程

2578837178240bf45fe8a2dea5e88717_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

CNN与GA优化CNN的识别率对比

92ad6883b538fe9dd9ded2175905d16b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

本课题采用的数据库如下:

ba21df8437a48b980f6f8429d4ad4722_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
基于GA-CNN遗传优化卷积神经网络的手势识别算法是一种结合了遗传算法(GA)和卷积神经网络(CNN)的深度学习算法,用于手势识别任务。该算法利用遗传算法优化卷积神经网络的参数,以提高手势识别的准确率和鲁棒性。

   手势识别是指通过分析手势图像或视频,识别出人的手势动作。随着深度学习技术的不断发展,卷积神经网络已成为手势识别领域的一种主流方法。然而,传统的卷积神经网络方法通常需要大量的标注数据进行训练,且易受光照、角度、遮挡等因素的干扰。为了解决这些问题,研究者们提出了基于遗传算法的卷积神经网络优化方法。

    GA-CNN算法的基本思想是将遗传算法与卷积神经网络相结合,利用遗传算法搜索最优的网络参数,以获得更好的手势识别性能。具体而言,GA-CNN算法包括两个阶段:遗传算法优化阶段和卷积神经网络分类阶段。

2.1遗传算法优化阶段
遗传算法是一种基于生物进化原理的优化算法,通过模拟生物进化过程中的选择、交叉、变异等操作,搜索最优解。在GA-CNN算法中,遗传算法用于优化卷积神经网络的参数,包括卷积核大小、步长、池化大小等。以下是遗传算法优化的基本公式:

(1) 选择操作:以适应度函数为依据,选择出适应度较高的个体组成下一代种群。适应度函数通常为分类准确率或损失函数的倒数。

(2) 交叉操作:以一定的交叉概率对选出的个体进行交叉操作,产生新的个体。常见的交叉操作包括点交叉、均匀交叉等。

(3) 变异操作:以一定的变异概率对个体进行变异操作,引入新的基因组合。常见的变异操作包括随机插入、随机删除等。

通过不断迭代选择、交叉、变异操作,遗传算法可以逐渐搜索到最优的网络参数。

2.2 卷积神经网络分类阶段
卷积神经网络是一种深度学习算法,用于图像分类、目标检测等任务。在GA-CNN算法中,卷积神经网络用于对手势图像进行分类。以下是卷积神经网络的基本公式:

(1) 卷积操作:通过卷积核将输入图像的局部区域与卷积核进行卷积运算,得到卷积层的输出。常见的卷积操作包括全连接层、卷积层、池化层等。

(2) ReLU激活函数:通过非线性激活函数增加网络的非线性表达能力,常用的激活函数包括ReLU、sigmoid、tanh等。

(3) 池化操作:通过池化函数对卷积层的输出进行下采样,减少计算复杂度,常用的池化函数包括最大池化、平均池化等。

通过多层的卷积、激活、池化操作,卷积神经网络可以对手势图像进行分类。在GA-CNN算法中,我们使用优化后的网络参数进行手势识别任务,以获得更好的分类性能。

   基于GA-CNN遗传优化卷积神经网络的手势识别算法是一种结合了遗传算法和卷积神经网络的深度学习算法,用于手势识别任务。该算法利用遗传算法搜索最优的网络参数,以获得更好的手势识别性能。通过不断迭代选择、交叉、变异操作,遗传算法可以逐渐搜索到最优的网络参数。在GA-CNN算法中,我们使用优化后的网络参数进行手势识别任务,以获得更好的分类性能。

3.MATLAB核心程序```while gen < MAXGEN
gen
Pe0 = 0.999;
pe1 = 0.001;

  FitnV=ranking(Objv);    
  Selch=select('sus',Chrom,FitnV);    
  Selch=recombin('xovsp', Selch,Pe0);   
  Selch=mut( Selch,pe1);   
  phen1=bs2rv(Selch,FieldD);   

  for a=1:1:NIND  
      X           = phen1(a,:);
      %计算对应的目标值
      [epls]      = func_obj(X);
      E           = epls;
      JJ(a,1)     = E;
  end 

  Objvsel=(JJ);    
  [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   
  gen=gen+1; 


  Error2(gen) = 100-mean(JJ);

end
tt=smooth(Error2,MAXGEN);
figure
plot(tt,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');

[V,I] = min(JJ);
X = phen1(I,:);
Layers = round(X(1));
lr = X(2);

digitDatasetPath = ['images\'];
imds = imageDatastore(digitDatasetPath,'IncludeSubfolders', true, 'LabelSource', 'foldernames');
%划分数据为训练集合验证集,训练集中每个类别包含1张图像,验证集包含其余图像的标签
[imdsTrain, imdsValidation] = splitEachLabel(imds,0.6,'randomized');%

if Layers == 2
%定义卷积神经网络的基础结构
layers = [
imageInputLayer([160 120 1]);%注意,400,150为能量图的大小,不能改
%第1个卷积层
convolution2dLayer(4, 15, 'Padding', 'same');%第一个卷积层
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第2个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%全连接层
fullyConnectedLayer(5);
%softmax
softmaxLayer;
%输出分类结果
classificationLayer;];

end

if Layers == 3
%定义卷积神经网络的基础结构
layers = [
imageInputLayer([160 120 1]);%注意,400,150为能量图的大小,不能改
%第1个卷积层
convolution2dLayer(4, 15, 'Padding', 'same');%第一个卷积层
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第2个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第3个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%全连接层
fullyConnectedLayer(5);
%softmax
softmaxLayer;
%输出分类结果
classificationLayer;];

end

if Layers == 4
%定义卷积神经网络的基础结构
layers = [
imageInputLayer([160 120 1]);%注意,400,150为能量图的大小,不能改
%第1个卷积层
convolution2dLayer(4, 15, 'Padding', 'same');%第一个卷积层
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第2个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第3个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第4个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%全连接层
fullyConnectedLayer(5);
%softmax
softmaxLayer;
%输出分类结果
classificationLayer;];

end

if Layers == 5
%定义卷积神经网络的基础结构
layers = [
imageInputLayer([160 120 1]);%注意,400,150为能量图的大小,不能改
%第1个卷积层
convolution2dLayer(4, 15, 'Padding', 'same');%第一个卷积层
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第2个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第3个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第4个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第5个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%全连接层
fullyConnectedLayer(5);
%softmax
softmaxLayer;
%输出分类结果
classificationLayer;];

end
%设置训练参数
options = trainingOptions('sgdm', ...
'InitialLearnRate', lr, ...
'MaxEpochs', 1000, ...
'Shuffle', 'every-epoch', ...
'ValidationData', imdsValidation, ...
'ValidationFrequency', 10, ...
'Verbose', false, ...
'Plots', 'training-progress');
rng(1)
%使用训练集训练网络
net = trainNetwork(imdsTrain, layers, options);

%对验证图像进行分类并计算精度
YPred = classify(net, imdsValidation);
YValidation = imdsValidation.Labels;

accuracy = 100*sum(YPred == YValidation) / numel(YValidation);
save R2.mat accuracy tt Layers lr
```

相关文章
|
9天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
105 68
|
18天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
17天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
76 17
|
1月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
59 10
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
66 10
|
1月前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
1月前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。
|
1月前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们日常生活中不可或缺的一部分。本文将深入探讨网络安全漏洞、加密技术和安全意识等方面的问题,并提供一些实用的建议和解决方案。我们将通过分析网络攻击的常见形式,揭示网络安全的脆弱性,并介绍如何利用加密技术来保护数据。此外,我们还将强调提高个人和企业的安全意识的重要性,以应对日益复杂的网络威胁。无论你是普通用户还是IT专业人士,这篇文章都将为你提供有价值的见解和指导。