m基于GA-CNN遗传优化卷积神经网络的手势识别算法matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: m基于GA-CNN遗传优化卷积神经网络的手势识别算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

CNN训练结果

c3c0d368098ff33e3cfaf970db377288_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

GA优化之后的CNN训练结果
d05455327c9f61cfc50e6a5e51e0ae47_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

GA优化过程得到的均值收敛过程

2578837178240bf45fe8a2dea5e88717_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

CNN与GA优化CNN的识别率对比

92ad6883b538fe9dd9ded2175905d16b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

本课题采用的数据库如下:

ba21df8437a48b980f6f8429d4ad4722_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
基于GA-CNN遗传优化卷积神经网络的手势识别算法是一种结合了遗传算法(GA)和卷积神经网络(CNN)的深度学习算法,用于手势识别任务。该算法利用遗传算法优化卷积神经网络的参数,以提高手势识别的准确率和鲁棒性。

   手势识别是指通过分析手势图像或视频,识别出人的手势动作。随着深度学习技术的不断发展,卷积神经网络已成为手势识别领域的一种主流方法。然而,传统的卷积神经网络方法通常需要大量的标注数据进行训练,且易受光照、角度、遮挡等因素的干扰。为了解决这些问题,研究者们提出了基于遗传算法的卷积神经网络优化方法。

    GA-CNN算法的基本思想是将遗传算法与卷积神经网络相结合,利用遗传算法搜索最优的网络参数,以获得更好的手势识别性能。具体而言,GA-CNN算法包括两个阶段:遗传算法优化阶段和卷积神经网络分类阶段。

2.1遗传算法优化阶段
遗传算法是一种基于生物进化原理的优化算法,通过模拟生物进化过程中的选择、交叉、变异等操作,搜索最优解。在GA-CNN算法中,遗传算法用于优化卷积神经网络的参数,包括卷积核大小、步长、池化大小等。以下是遗传算法优化的基本公式:

(1) 选择操作:以适应度函数为依据,选择出适应度较高的个体组成下一代种群。适应度函数通常为分类准确率或损失函数的倒数。

(2) 交叉操作:以一定的交叉概率对选出的个体进行交叉操作,产生新的个体。常见的交叉操作包括点交叉、均匀交叉等。

(3) 变异操作:以一定的变异概率对个体进行变异操作,引入新的基因组合。常见的变异操作包括随机插入、随机删除等。

通过不断迭代选择、交叉、变异操作,遗传算法可以逐渐搜索到最优的网络参数。

2.2 卷积神经网络分类阶段
卷积神经网络是一种深度学习算法,用于图像分类、目标检测等任务。在GA-CNN算法中,卷积神经网络用于对手势图像进行分类。以下是卷积神经网络的基本公式:

(1) 卷积操作:通过卷积核将输入图像的局部区域与卷积核进行卷积运算,得到卷积层的输出。常见的卷积操作包括全连接层、卷积层、池化层等。

(2) ReLU激活函数:通过非线性激活函数增加网络的非线性表达能力,常用的激活函数包括ReLU、sigmoid、tanh等。

(3) 池化操作:通过池化函数对卷积层的输出进行下采样,减少计算复杂度,常用的池化函数包括最大池化、平均池化等。

通过多层的卷积、激活、池化操作,卷积神经网络可以对手势图像进行分类。在GA-CNN算法中,我们使用优化后的网络参数进行手势识别任务,以获得更好的分类性能。

   基于GA-CNN遗传优化卷积神经网络的手势识别算法是一种结合了遗传算法和卷积神经网络的深度学习算法,用于手势识别任务。该算法利用遗传算法搜索最优的网络参数,以获得更好的手势识别性能。通过不断迭代选择、交叉、变异操作,遗传算法可以逐渐搜索到最优的网络参数。在GA-CNN算法中,我们使用优化后的网络参数进行手势识别任务,以获得更好的分类性能。

3.MATLAB核心程序```while gen < MAXGEN
gen
Pe0 = 0.999;
pe1 = 0.001;

  FitnV=ranking(Objv);    
  Selch=select('sus',Chrom,FitnV);    
  Selch=recombin('xovsp', Selch,Pe0);   
  Selch=mut( Selch,pe1);   
  phen1=bs2rv(Selch,FieldD);   

  for a=1:1:NIND  
      X           = phen1(a,:);
      %计算对应的目标值
      [epls]      = func_obj(X);
      E           = epls;
      JJ(a,1)     = E;
  end 

  Objvsel=(JJ);    
  [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   
  gen=gen+1; 


  Error2(gen) = 100-mean(JJ);

end
tt=smooth(Error2,MAXGEN);
figure
plot(tt,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');

[V,I] = min(JJ);
X = phen1(I,:);
Layers = round(X(1));
lr = X(2);

digitDatasetPath = ['images\'];
imds = imageDatastore(digitDatasetPath,'IncludeSubfolders', true, 'LabelSource', 'foldernames');
%划分数据为训练集合验证集,训练集中每个类别包含1张图像,验证集包含其余图像的标签
[imdsTrain, imdsValidation] = splitEachLabel(imds,0.6,'randomized');%

if Layers == 2
%定义卷积神经网络的基础结构
layers = [
imageInputLayer([160 120 1]);%注意,400,150为能量图的大小,不能改
%第1个卷积层
convolution2dLayer(4, 15, 'Padding', 'same');%第一个卷积层
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第2个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%全连接层
fullyConnectedLayer(5);
%softmax
softmaxLayer;
%输出分类结果
classificationLayer;];

end

if Layers == 3
%定义卷积神经网络的基础结构
layers = [
imageInputLayer([160 120 1]);%注意,400,150为能量图的大小,不能改
%第1个卷积层
convolution2dLayer(4, 15, 'Padding', 'same');%第一个卷积层
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第2个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第3个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%全连接层
fullyConnectedLayer(5);
%softmax
softmaxLayer;
%输出分类结果
classificationLayer;];

end

if Layers == 4
%定义卷积神经网络的基础结构
layers = [
imageInputLayer([160 120 1]);%注意,400,150为能量图的大小,不能改
%第1个卷积层
convolution2dLayer(4, 15, 'Padding', 'same');%第一个卷积层
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第2个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第3个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第4个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%全连接层
fullyConnectedLayer(5);
%softmax
softmaxLayer;
%输出分类结果
classificationLayer;];

end

if Layers == 5
%定义卷积神经网络的基础结构
layers = [
imageInputLayer([160 120 1]);%注意,400,150为能量图的大小,不能改
%第1个卷积层
convolution2dLayer(4, 15, 'Padding', 'same');%第一个卷积层
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第2个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第3个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第4个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%第5个卷积层
convolution2dLayer(4, 15, 'padding', 'same');
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(2, 'Stride', 2);

%全连接层
fullyConnectedLayer(5);
%softmax
softmaxLayer;
%输出分类结果
classificationLayer;];

end
%设置训练参数
options = trainingOptions('sgdm', ...
'InitialLearnRate', lr, ...
'MaxEpochs', 1000, ...
'Shuffle', 'every-epoch', ...
'ValidationData', imdsValidation, ...
'ValidationFrequency', 10, ...
'Verbose', false, ...
'Plots', 'training-progress');
rng(1)
%使用训练集训练网络
net = trainNetwork(imdsTrain, layers, options);

%对验证图像进行分类并计算精度
YPred = classify(net, imdsValidation);
YValidation = imdsValidation.Labels;

accuracy = 100*sum(YPred == YValidation) / numel(YValidation);
save R2.mat accuracy tt Layers lr
```

相关文章
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
4天前
|
机器学习/深度学习 人工智能 网络架构
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
20 1
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
14天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
11天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
15天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
15天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
15天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
34 3
|
6天前
|
机器学习/深度学习 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
24 0
|
12天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
29 0

热门文章

最新文章

下一篇
无影云桌面