m基于GA-LSTM遗传优化长短期记忆网络的电力负荷数据预测算法matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: m基于GA-LSTM遗传优化长短期记忆网络的电力负荷数据预测算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg

2.算法涉及理论知识概要
基于GA-LSTM遗传优化长短记忆网络的电力负荷数据预测算法是一种结合了遗传算法(GA)和长短时记忆网络(LSTM)的混合模型,用于预测电力负荷数据。该算法通过遗传算法优化LSTM模型的超参数,以提高模型的预测性能。下面将详细介绍该算法的原理、公式和实现过程。

2.1、遗传算法
遗传算法是一种基于生物进化理论的优化算法,用于解决优化问题。它通过模拟自然界的进化过程,使用选择、交叉和变异等操作,寻找最优解。在遗传算法中,每个解被称为一个个体,每个个体都由一个染色体表示。染色体由基因组成,每个基因都有一个值,称为等位基因。

遗传算法的基本流程如下:

初始化种群:随机生成一组个体作为初始种群。
计算适应度:对于每个个体,计算其适应度函数的值。适应度函数用于衡量个体的优劣程度,值越大表示个体越优秀。
选择操作:根据适应度函数的值,选择出适应度较高的个体作为父代。选择操作有多种方式,如轮盘赌选择、锦标赛选择等。
交叉操作:对选出的父代进行交叉操作,生成子代。交叉操作是将两个父代的染色体按一定概率交换基因的过程。
变异操作:对子代进行变异操作,改变染色体上基因的值。变异操作的概率较低,一般取较小值。
迭代更新:重复选择、交叉和变异操作,直到满足终止条件,得到最优解或近似最优解。
2.2、长短时记忆网络
长短时记忆网络是一种循环神经网络(RNN)的变体,用于处理序列数据。它通过引入记忆单元来保存先前的信息,解决了传统RNN在处理长序列时出现的梯度消失问题。LSTM模型的基本结构如下:

9ffb3891da8c46674428d0c2bf5e7498_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   LSTM模型由输入门、遗忘门、输出门和记忆单元组成。输入门负责将输入数据送入记忆单元,遗忘门负责将上一时刻的输出从记忆单元中遗忘掉,输出门负责将记忆单元的内容作为输出。记忆单元保存了上一时刻的输出和当前时刻的输入,用于计算当前时刻的输出。

LSTM模型的计算过程如下:

输入门:通过一个全连接层将当前时刻的输入xt​和上一时刻的输出ht−1​合并成一个向量it​,再通过一个非线性函数将向量it​映射成输入门输出gt​和候选输出ct​。
遗忘门:通过一个全连接层将当前时刻的输入xt​和上一时刻的输出ht−1​合并成一个向量ft​,再通过一个非线性函数将向量ft​映射成遗忘门输出rt​,用于决定哪些信息需要被遗忘掉。
记忆单元:记忆单元保存了上一时刻的输出ht−1​和当前时刻的输入xt​,用于计算当前时刻的输出。具体来说,将上一时刻的输出ht−1​和当前时刻的输入xt​通过全连接层合并成一个向量zt​,再通过一个非线性函数将向量zt​映射成候选输出ct​。同时将遗忘门输出的向量rt​与上一时刻的记忆单元状态ct−1​相乘,得到被遗忘掉的信息dt​,再将候选输出ct​加上被遗忘掉的信息dt​得到当前时刻的记忆单元状态ct​。
输出门:将记忆单元状态ct​和上一时刻的输出ht−1​通过全连接层合并成一个向量yt​,再通过一个非线性函数将向量映射成当前时刻的输出ht​。
2.3、GA-LSTM混合模型
基于GA-LSTM遗传优化长短记忆网络的电力负荷数据预测算法将遗传算法和LSTM相结合,通过遗传算法优化LSTM模型的超参数,提高模型的预测性能。该算法的实现过程如下:

数据预处理:对原始电力负荷数据进行预处理,包括归一化等处理,以保证数据的质量和一致性。同时将数据划分为训练集和测试集,用于训练和测试模型。
LSTM模型参数设置:根据提取的特征,设置LSTM模型的参数。这些参数将作为遗传算法的优化变量。本课题选择的优化参数是隐含层规模。
构建GA-LSTM混合模型:将遗传算法和LSTM模型相结合,构建GA-LSTM混合模型。具体做法是将LSTM模型的参数作为遗传算法的优化变量,使用遗传算法搜索最优参数。在搜索过程中,使用交叉和变异等操作来产生新的参数组合,并通过适应度函数评估其优劣程度,最终得到一组最优参数。
训练GA-LSTM混合模型:使用训练集对GA-LSTM混合模型进行训练,使其能够学习到数据的特征和规律。在训练过程中,使用反向传播算法计算梯度并更新参数。
预测电力负荷数据:使用训练好的GA-LSTM混合模型对测试集进行预测,并输出预测结果。为了得到更好的预测效果,可以使用滑动窗口技术对测试集进行划块处理,并对每个块进行预测。
该算法的优点在于将遗传算法和LSTM相结合,通过不断迭代和交叉变异来寻找最优解,克服了LSTM模型参数较多、训练过程复杂的问题,提高了模型的学习能力和泛化性能。同时,该算法还具有较好的通用性,可以应用于其他领域的数据预测问题。

3.MATLAB核心程序
```while gen < MAXGEN
gen
Pe0 = 0.999;
pe1 = 0.001;

  FitnV=ranking(Objv);    
  Selch=select('sus',Chrom,FitnV);    
  Selch=recombin('xovsp', Selch,Pe0);   
  Selch=mut( Selch,pe1);   
  phen1=bs2rv(Selch,FieldD);   

  for a=1:1:NIND  
      X           = phen1(a);
      %计算对应的目标值
      [epls]      = func_obj(X);
      E           = epls;
      JJ(a,1)     = E;
  end 

  Objvsel=(JJ);    
  [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   
  gen=gen+1; 


  Error2(gen) = mean(JJ);

end
figure
plot(smooth(Error2,MAXGEN),'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');

[V,I] = min(JJ);
X = phen1(I);

numFeatures = 2;
numResponses = 1;
numHiddenUnits = round(X);% 定义隐藏层中LSTM单元的数量
layers = [ ...% 定义网络层结构
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits)
...............................................................
net = trainNetwork(P,T,layers,options);

ypred = predict(net,[P],'MiniBatchSize',1);

figure;
subplot(211);
plot(T)
hold on
plot(ypred)
xlabel('days');
ylabel('负荷');
legend('实际负荷','LSTM预测负荷');
subplot(212);
plot(T-ypred)
xlabel('days');
ylabel('LSTM误差');

save R2.mat T ypred
```

相关文章
|
13天前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
133 73
|
2天前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
20天前
|
算法 5G 数据安全/隐私保护
SCM信道模型和SCME信道模型的matlab特性仿真,对比空间相关性,时间相关性,频率相关性
该简介展示了使用MATLAB 2022a进行无线通信信道仿真的结果,仿真表明信道的时间、频率和空间相关性随间隔增加而减弱,并且宏小区与微小区间的相关性相似。文中介绍了SCM和SCME模型,分别用于WCDMA和LTE/5G系统仿真,重点在于其空间、时间和频率相关性的建模。SCME模型在SCM的基础上进行了扩展,提供了更精细的参数化,增强了模型的真实性和复杂度。最后附上了MATLAB核心程序,用于计算不同天线间距下的空间互相关性。
23 0
|
2天前
|
算法 数据安全/隐私保护
星座图整形技术在光纤通信中的matlab性能仿真,分别对比标准QAM,概率整形QAM以及几何整形QAM
本文介绍了现代光纤通信系统中的星座图整形技术,包括标准QAM、概率整形QAM和几何整形QAM三种方法,并对比了它们的原理及优缺点。MATLAB 2022a仿真结果显示了不同技术的效果。标准QAM实现简单但效率有限;概率整形QAM通过非均匀符号分布提高传输效率;几何整形QAM优化星座点布局,增强抗干扰能力。附带的核心程序代码展示了GMI计算过程。
9 0
|
14天前
|
算法
基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真
该程序基于蚁群优化算法(ACO)为无人机(UAV)规划最优巡检路线,将无人机视作“蚂蚁”,巡检点作为“食物源”,目标是最小化总距离、能耗或时间。使用MATLAB 2022a版本实现,通过迭代更新信息素浓度来优化路径。算法包括初始化信息素矩阵、蚂蚁移动与信息素更新,并在满足终止条件前不断迭代,最终输出最短路径及其长度。
|
17天前
|
算法 数据挖掘 vr&ar
基于ESTAR指数平滑转换自回归模型的CPI数据统计分析matlab仿真
该程序基于ESTAR指数平滑转换自回归模型,对CPI数据进行统计分析与MATLAB仿真,主要利用M-ESTAR模型计算WNL值、P值、Q值及12阶ARCH值。ESTAR模型结合指数平滑与状态转换自回归,适用于处理经济数据中的非线性趋势变化。在MATLAB 2022a版本中运行并通过ADF检验验证模型的平稳性,适用于复杂的高阶自回归模型。
|
17天前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
20天前
|
算法
基于极大似然算法的系统参数辨识matlab仿真
本程序基于极大似然算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计,并计算估计误差及收敛曲线,对比不同信噪比下的误差表现。在MATLAB2022a版本中运行,展示了参数估计值及其误差曲线。极大似然估计方法通过最大化观测数据的似然函数来估计未知参数,适用于多种系统模型。
|
20天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于NSCT非采样轮廓波变换和CNN网络人脸识别matlab仿真
本项目展示了一种结合非采样轮廓波变换(NSCT)与卷积神经网络(CNN)的人脸识别系统。通过NSCT提取多尺度、多方向特征,并利用CNN的强大分类能力实现高效识别。项目包括ORL人脸库的训练结果对比,提供Matlab 2022a版本下的完整代码及详细中文注释,另有操作步骤视频指导。
下一篇
无影云桌面