GA-LSTM回归预测 | Matlab遗传算法优化长短时记忆网络回归预测

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: GA-LSTM回归预测 | Matlab遗传算法优化长短时记忆网络回归预测
+关注继续查看

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在当今的能源领域,风能作为一种清洁、可再生的能源源泉,受到越来越多的关注。然而,由于风能的不稳定性和不可预测性,风电的发电效率一直是一个挑战。为了解决这个问题,许多研究人员开始使用机器学习算法来预测风电的发电量。

长短时记忆(LSTM)是一种常用的深度学习模型,它在序列数据的处理中表现出色。然而,由于LSTM模型的参数较多,其训练过程较为复杂,很容易陷入局部最优解。为了提高LSTM模型的预测性能,本文提出了一种基于遗传算法(GA)优化的GA-biLSTM模型。

GA-biLSTM模型是将遗传算法与双向长短时记忆网络(biLSTM)相结合的一种混合模型。遗传算法是一种模拟自然选择和遗传机制的优化算法,通过不断迭代和交叉变异来寻找最优解。在GA-biLSTM模型中,遗传算法用于优化biLSTM模型的超参数,如学习率、隐藏层大小等,以提高模型的预测准确性。

为了验证GA-biLSTM模型的性能,我们使用了风电数据集进行了实验。首先,我们使用传统的LSTM模型对风电数据进行预测,并记录了其预测结果。然后,我们使用GA-biLSTM模型对同一组数据进行预测,并与传统的LSTM模型进行对比。

实验结果表明,GA-biLSTM模型相比传统的LSTM模型在风电数据预测方面具有更好的性能。通过遗传算法的优化,GA-biLSTM模型能够更准确地捕捉到风能数据的规律和趋势,从而提高了预测的准确性和稳定性。与传统的LSTM模型相比,GA-biLSTM模型的预测误差更小,预测结果更接近实际值。

此外,我们还对GA-biLSTM模型进行了参数敏感性分析。结果显示,遗传算法优化的超参数能够显著影响模型的预测性能。通过调整遗传算法的参数,我们可以进一步提高模型的预测准确性。

综上所述,基于遗传算法优化的GA-biLSTM模型在风电数据预测方面具有较好的性能。通过结合遗传算法和双向长短时记忆网络,该模型能够更准确地预测风电的发电量,为风能行业的发展提供了有力支持。未来的研究可以进一步探索其他优化算法与深度学习模型的结合,以进一步提高风电数据预测的准确性和稳定性。

📣 部分代码

% This function initialize the first population of search agentsfunction Positions=initialization(SearchAgents_no,dim,ub,lb)Boundary_no= size(ub,2); % numnber of boundaries% If the boundaries of all variables are equal and user enter a signle% number for both ub and lbif Boundary_no==1    Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;end% If each variable has a different lb and ubif Boundary_no>1    for i=1:dim        ub_i=ub(i);        lb_i=lb(i);        Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;    endend

⛳️ 运行结果

image

image

image

🔗 参考文献

[1] 周中,张俊杰,丁昊晖,等.基于GA-Bi-LSTM的盾构隧道下穿既有隧道沉降预测模型[J].岩石力学与工程学报, 2023.

[2] 刘丹,吕倩,胡少华,等.大坝变形GA-LSTM组合预测模型研究[J].安全与环境学报, 2023.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合


相关文章
|
1月前
|
存储 缓存 网络协议
深入了解DPDK:如何优化网络包处理性能(下)
深入了解DPDK:如何优化网络包处理性能
|
1月前
|
Linux API 调度
深入了解DPDK:如何优化网络包处理性能(上)
深入了解DPDK:如何优化网络包处理性能
深入了解DPDK:如何优化网络包处理性能(上)
|
2月前
|
机器学习/深度学习 数据采集 算法
m基于GA-LSTM遗传优化长短期记忆网络的电力负荷数据预测算法matlab仿真
m基于GA-LSTM遗传优化长短期记忆网络的电力负荷数据预测算法matlab仿真
43 4
|
2月前
|
存储 网络协议 调度
淘宝移动端统一网络库的架构演进和弱网优化技术实践
本文将介绍淘宝 APP 统一网络库演进的过程,讲述如何围绕体验持续构建南北向从监测到加速一体化的终端网络架构,通过构建 NPM 弱网诊断感知能力,落地原生多通道技术/多协议择优调度手段,贴合厂商附能网络请求加速,实现去 SPDY 及规模化 IPv6/H3 协议簇的平滑过渡,为用户提供弱网更好、好网更优的 APP 加载浏览体验,支撑业务创造更多的可能性。
128 0
|
2月前
|
Kubernetes 网络虚拟化 Perl
k8s常用的网络插件优化方案|干货
k8s常用的网络插件优化方案|干货
|
2月前
|
Kubernetes Perl 容器
如何优化k8s网络插件?
如何优化k8s网络插件?
|
3月前
|
机器学习/深度学习 传感器 算法
AO-LSTM回归预测 | Matlab天鹰优化长短时记忆网络回归预测
AO-LSTM回归预测 | Matlab天鹰优化长短时记忆网络回归预测
|
3月前
|
机器学习/深度学习 传感器 算法
PSO-LSTM回归预测 | Matlab粒子群优化长短时记忆网络回归预测
PSO-LSTM回归预测 | Matlab粒子群优化长短时记忆网络回归预测
|
3月前
|
机器学习/深度学习 传感器 算法
GWO-LSTM回归预测 | Matlab灰狼优化算法优化长短时记忆网络回归预测
GWO-LSTM回归预测 | Matlab灰狼优化算法优化长短时记忆网络回归预测
|
3月前
|
负载均衡 算法 云计算
深入理解负载均衡:优化你的网络性能
在今天的数字时代,网络性能和可用性对于任何企业或组织都至关重要。负载均衡是一个关键的网络架构组件,可以帮助分散流量、提高可靠性和确保系统的高可用性。本文将深入探讨负载均衡的概念、工作原理以及在现代网络中的应用。
相关产品
机器翻译
推荐文章
更多