【GRU回归预测】基于麻雀算法优化门控循环单元SSA-GRU神经网络实现多输入单输出回归预测附matlab代码

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 【GRU回归预测】基于麻雀算法优化门控循环单元SSA-GRU神经网络实现多输入单输出回归预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

软测量建模能够有效地解决生产过程中在线分析仪表测量滞后大、价格昂贵、维护保养复杂等问题。目前,神经网络是软测量建模的主要工具之一。而由于一般的循环神经网络在解决软测量问题时存在长范围依赖和梯度消失的问题,故本文采用门限循环单元神经网络(GRU)建立模型,其门限结构更少,训练效率更高。为进一步提高神经网络的预测精度,本文使用麻雀优化算法(SSA)来优化GRU的初始参数,并以此建立了SSA-GRU软测量模型。最后,将该方法应用于丙烯精馏塔中塔顶丙烷浓度的预测,实验结果表明,在动态建模方面SSA-GRU具有更高的预测精度。

⛄ 部分代码

function [fMin , bestX, Convergence_curve] = SSA(X, N, M, c, d, dim, fobj)


P_percent = 0.2;    % 发现者的种群规模占总种群规模的百分比


pNum = round(N*P_percent);    % 发现者数量20%


SD = pNum/2;      % 警戒者数量10%


ST = 0.8;           % 安全阈值

lb = c.*ones(1, dim);     % 下限

ub = d.*ones(1,dim);    % 上限

% 初始化

for i = 1:N

%     X(i, :) = lb + (ub - lb) .* rand(1, dim);

   fitness(i) = fobj(X(i, :));

end

pFit = fitness;

pX = X;                            % 与pFit相对应的个体最佳位置

[fMin, bestI] = min(fitness);      % fMin表示全局最优解

bestX = X(bestI, :);             % bestX表示全局最优位置


%% 迭代寻优

for t = 1 : M      

   [~, sortIndex] = sort(pFit);            % 排序

   

   [fmax, B] = max(pFit);

   worst = X(B, :);

   

   %% 发现者位置更新

   r2 = rand(1);

   if r2 < ST

       for i = 1:pNum      % Equation (3)

           r1 = rand(1);

           X(sortIndex(i), :) = pX(sortIndex(i), :)*exp(-(i)/(r1*M));

           X(sortIndex(i), :) = Bounds(X(sortIndex(i), :), lb, ub);

           fitness(sortIndex(i)) = fobj(X(sortIndex(i), :));

       end

   else

       for i = 1:pNum

           X(sortIndex(i), :) = pX(sortIndex(i), :)+randn(1)*ones(1, dim);

           X(sortIndex(i), :) = Bounds(X(sortIndex(i), :), lb, ub);

           fitness(sortIndex(i)) = fobj(X(sortIndex(i), :));

       end

   end

   

   [~, bestII] = min(fitness);

   bestXX = X(bestII, :);

   

   %% 跟随者位置更新

   for i = (pNum+1):N                     % Equation (4)

       A = floor(rand(1, dim)*2)*2-1;

       if i > N/2

           X(sortIndex(i), :) = randn(1)*exp((worst-pX(sortIndex(i), :))/(i)^2);

       else

           X(sortIndex(i), :) = bestXX+(abs((pX(sortIndex(i), :)-bestXX)))*(A'*(A*A')^(-1))*ones(1, dim);

       end

       X(sortIndex(i), :) = Bounds(X(sortIndex(i), :), lb, ub);

       fitness(sortIndex(i)) = fobj(X(sortIndex(i), :));

   end

   

   %% 警戒者位置更新

   c = randperm(numel(sortIndex));

   b = sortIndex(c(1:SD));

   for j = 1:length(b)      % Equation (5)

       if pFit(sortIndex(b(j))) > fMin

           X(sortIndex(b(j)), :) = bestX+(randn(1, dim)).*(abs((pX(sortIndex(b(j)), :) -bestX)));

       else

           X(sortIndex(b(j)), :) = pX(sortIndex(b(j)), :)+(2*rand(1)-1)*(abs(pX(sortIndex(b(j)), :)-worst))/(pFit(sortIndex(b(j)))-fmax+1e-50);

       end

       X(sortIndex(b(j)), :) = Bounds(X(sortIndex(b(j)), :), lb, ub);

       fitness(sortIndex(b(j))) = fobj(X(sortIndex(b(j)), :));

   end

   

   for i = 1:N

       % 更新个体最优

       if fitness(i) < pFit(i)

           pFit(i) = fitness(i);

           pX(i, :) = X(i, :);

       end

       % 更新全局最优

       if pFit(i) < fMin

           fMin = pFit(i);

           bestX = pX(i, :);

       end

   end

   Convergence_curve(t) = fMin;

   

   disp(['SSA: At iteration ', num2str(t), ' ,the best fitness is ', num2str(fMin)]);

end


%% 边界处理

function s = Bounds(s, Lb, Ub)

% 下界

temp = s;

I = temp < Lb;

temp(I) = Lb(I);


% 上界

J = temp > Ub;

temp(J) = Ub(J);

% 更新

s = temp;

⛄ 运行结果

⛄ 参考文献

[1]殷礼胜, 刘攀, 孙双晨,等. 基于互补集合经验模态分解和改进麻雀搜索算法优化双向门控循环单元的交通流组合预测模型[J]. 电子与信息学报, 2022, 45:1-10.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
7天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
6天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
6天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
8天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
212 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
135 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
96 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章