【GRU回归预测】基于麻雀算法优化门控循环单元SSA-GRU神经网络实现多输入单输出回归预测附matlab代码

简介: 【GRU回归预测】基于麻雀算法优化门控循环单元SSA-GRU神经网络实现多输入单输出回归预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

软测量建模能够有效地解决生产过程中在线分析仪表测量滞后大、价格昂贵、维护保养复杂等问题。目前,神经网络是软测量建模的主要工具之一。而由于一般的循环神经网络在解决软测量问题时存在长范围依赖和梯度消失的问题,故本文采用门限循环单元神经网络(GRU)建立模型,其门限结构更少,训练效率更高。为进一步提高神经网络的预测精度,本文使用麻雀优化算法(SSA)来优化GRU的初始参数,并以此建立了SSA-GRU软测量模型。最后,将该方法应用于丙烯精馏塔中塔顶丙烷浓度的预测,实验结果表明,在动态建模方面SSA-GRU具有更高的预测精度。

⛄ 部分代码

function [fMin , bestX, Convergence_curve] = SSA(X, N, M, c, d, dim, fobj)


P_percent = 0.2;    % 发现者的种群规模占总种群规模的百分比


pNum = round(N*P_percent);    % 发现者数量20%


SD = pNum/2;      % 警戒者数量10%


ST = 0.8;           % 安全阈值

lb = c.*ones(1, dim);     % 下限

ub = d.*ones(1,dim);    % 上限

% 初始化

for i = 1:N

%     X(i, :) = lb + (ub - lb) .* rand(1, dim);

   fitness(i) = fobj(X(i, :));

end

pFit = fitness;

pX = X;                            % 与pFit相对应的个体最佳位置

[fMin, bestI] = min(fitness);      % fMin表示全局最优解

bestX = X(bestI, :);             % bestX表示全局最优位置


%% 迭代寻优

for t = 1 : M      

   [~, sortIndex] = sort(pFit);            % 排序

   

   [fmax, B] = max(pFit);

   worst = X(B, :);

   

   %% 发现者位置更新

   r2 = rand(1);

   if r2 < ST

       for i = 1:pNum      % Equation (3)

           r1 = rand(1);

           X(sortIndex(i), :) = pX(sortIndex(i), :)*exp(-(i)/(r1*M));

           X(sortIndex(i), :) = Bounds(X(sortIndex(i), :), lb, ub);

           fitness(sortIndex(i)) = fobj(X(sortIndex(i), :));

       end

   else

       for i = 1:pNum

           X(sortIndex(i), :) = pX(sortIndex(i), :)+randn(1)*ones(1, dim);

           X(sortIndex(i), :) = Bounds(X(sortIndex(i), :), lb, ub);

           fitness(sortIndex(i)) = fobj(X(sortIndex(i), :));

       end

   end

   

   [~, bestII] = min(fitness);

   bestXX = X(bestII, :);

   

   %% 跟随者位置更新

   for i = (pNum+1):N                     % Equation (4)

       A = floor(rand(1, dim)*2)*2-1;

       if i > N/2

           X(sortIndex(i), :) = randn(1)*exp((worst-pX(sortIndex(i), :))/(i)^2);

       else

           X(sortIndex(i), :) = bestXX+(abs((pX(sortIndex(i), :)-bestXX)))*(A'*(A*A')^(-1))*ones(1, dim);

       end

       X(sortIndex(i), :) = Bounds(X(sortIndex(i), :), lb, ub);

       fitness(sortIndex(i)) = fobj(X(sortIndex(i), :));

   end

   

   %% 警戒者位置更新

   c = randperm(numel(sortIndex));

   b = sortIndex(c(1:SD));

   for j = 1:length(b)      % Equation (5)

       if pFit(sortIndex(b(j))) > fMin

           X(sortIndex(b(j)), :) = bestX+(randn(1, dim)).*(abs((pX(sortIndex(b(j)), :) -bestX)));

       else

           X(sortIndex(b(j)), :) = pX(sortIndex(b(j)), :)+(2*rand(1)-1)*(abs(pX(sortIndex(b(j)), :)-worst))/(pFit(sortIndex(b(j)))-fmax+1e-50);

       end

       X(sortIndex(b(j)), :) = Bounds(X(sortIndex(b(j)), :), lb, ub);

       fitness(sortIndex(b(j))) = fobj(X(sortIndex(b(j)), :));

   end

   

   for i = 1:N

       % 更新个体最优

       if fitness(i) < pFit(i)

           pFit(i) = fitness(i);

           pX(i, :) = X(i, :);

       end

       % 更新全局最优

       if pFit(i) < fMin

           fMin = pFit(i);

           bestX = pX(i, :);

       end

   end

   Convergence_curve(t) = fMin;

   

   disp(['SSA: At iteration ', num2str(t), ' ,the best fitness is ', num2str(fMin)]);

end


%% 边界处理

function s = Bounds(s, Lb, Ub)

% 下界

temp = s;

I = temp < Lb;

temp(I) = Lb(I);


% 上界

J = temp > Ub;

temp(J) = Ub(J);

% 更新

s = temp;

⛄ 运行结果

⛄ 参考文献

[1]殷礼胜, 刘攀, 孙双晨,等. 基于互补集合经验模态分解和改进麻雀搜索算法优化双向门控循环单元的交通流组合预测模型[J]. 电子与信息学报, 2022, 45:1-10.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
相关文章
|
5月前
|
机器学习/深度学习 数据采集 算法
【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现)
【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现)
152 0
|
4月前
|
机器学习/深度学习 并行计算 算法
【超级棒的算法改进】融合鱼鹰和柯西变异的麻雀优化算法研究(Matlab代码实现)
【超级棒的算法改进】融合鱼鹰和柯西变异的麻雀优化算法研究(Matlab代码实现)
183 1
|
3月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
186 0
|
4月前
|
传感器 机器学习/深度学习 算法
【无人机编队】基于麻雀算法分布式无人机群自适应航迹规划和碰撞检测研究(Matlab代码实现)
【无人机编队】基于麻雀算法分布式无人机群自适应航迹规划和碰撞检测研究(Matlab代码实现)
123 2
|
4月前
|
机器学习/深度学习 编解码 并行计算
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)
231 0
|
5月前
|
机器学习/深度学习 传感器 边缘计算
【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)
【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)
155 0
|
10月前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
10月前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
|
3月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
382 0
|
3月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
258 2