【lssvm回归预测】基于萤火虫算法优化最小二乘支持向量机lssvm实现数据回归预测附matlab代码

简介: 【lssvm回归预测】基于萤火虫算法优化最小二乘支持向量机lssvm实现数据回归预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

短时交通流预测是实现智能交通控制与管理,交通流状态辨识和实时交通流诱导的前提及关键,也是智能化交通管理的客观需要.到目前为止,它的研究结果都不尽如人意.现有的以精确数学模型为基础的传统预测方法存在计算复杂,运算时间长,需要大量历史数据,预测精度不高等缺点.因此通过研究新型人工智能方法改进短期交通流预测具有一定的现实意义.本文在对现有短期交通流预测模型对比分析及交通流特性研究分析基础上,采用萤火虫算法优化最小二乘支持向量机方法进行短期交通流预测模型,取得较好的效果. 支持向量机是一种新的机器学习算法,建立在统计学习理论的基础上,采用结构风险最小化原则,具有预测能力强,全局最优化以及收敛速度快等特点,相比较以经验风险化为基础的神经网络学习算法有更好的理论依据和更好的泛化性能.对于支持向量机模型而言,其算法相对简单,运算时间短,预测精度较高,比较适用于交通流预测研究,特别是在引入最小二乘理论后,计算简化为求解一个线性方程组,同时精度也能得到保证.,该方法首先利用萤火虫算法算法的全局搜索能力来获取最小二乘支持向量机的惩罚因子和核函数宽度,有效解决了最小二乘支持向量机难以快速精准寻找最优参数的问题.

⛄ 部分代码

function omega = kernel_matrix(Xtrain,kernel_type, kernel_pars,Xt)

% Construct the positive (semi-) definite and symmetric kernel matrix

%

% >> Omega = kernel_matrix(X, kernel_fct, sig2)

%

% This matrix should be positive definite if the kernel function

% satisfies the Mercer condition. Construct the kernel values for

% all test data points in the rows of Xt, relative to the points of X.

%

% >> Omega_Xt = kernel_matrix(X, kernel_fct, sig2, Xt)

%

%

% Full syntax

%

% >> Omega = kernel_matrix(X, kernel_fct, sig2)

% >> Omega = kernel_matrix(X, kernel_fct, sig2, Xt)

%

% Outputs

%   Omega  : N x N (N x Nt) kernel matrix

% Inputs

%   X      : N x d matrix with the inputs of the training data

%   kernel : Kernel type (by default 'RBF_kernel')

%   sig2   : Kernel parameter (bandwidth in the case of the 'RBF_kernel')

%   Xt(*)  : Nt x d matrix with the inputs of the test data

%

% See also:

%  RBF_kernel, lin_kernel, kpca, trainlssvm, kentropy



% Copyright (c) 2011,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.be/sista/lssvmlab


[nb_data,d] = size(Xtrain);



if strcmp(kernel_type,'RBF_kernel'),

   if nargin<4,

       XXh = sum(Xtrain.^2,2)*ones(1,nb_data);

       omega = XXh+XXh'-2*(Xtrain*Xtrain');

       omega = exp(-omega./(2*kernel_pars(1)));

   else

       XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1));

       XXh2 = sum(Xt.^2,2)*ones(1,nb_data);

       omega = XXh1+XXh2' - 2*Xtrain*Xt';

       omega = exp(-omega./(2*kernel_pars(1)));

   end

   

elseif strcmp(kernel_type,'RBF4_kernel'),

   if nargin<4,

       XXh = sum(Xtrain.^2,2)*ones(1,nb_data);

       omega = XXh+XXh'-2*(Xtrain*Xtrain');

       omega = 0.5*(3-omega./kernel_pars).*exp(-omega./(2*kernel_pars(1)));

   else

       XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1));

       XXh2 = sum(Xt.^2,2)*ones(1,nb_data);

       omega = XXh1+XXh2' - 2*Xtrain*Xt';

       omega = 0.5*(3-omega./kernel_pars).*exp(-omega./(2*kernel_pars(1)));

   end

   

% elseif strcmp(kernel_type,'sinc_kernel'),

%     if nargin<4,

%         omega = sum(Xtrain,2)*ones(1,size(Xtrain,1));

%         omega = omega - omega';

%         omega = sinc(omega./kernel_pars(1));

%     else

%         XXh1 = sum(Xtrain,2)*ones(1,size(Xt,1));

%         XXh2 = sum(Xt,2)*ones(1,nb_data);

%         omega = XXh1-XXh2';

%         omega = sinc(omega./kernel_pars(1));

%     end

   

elseif strcmp(kernel_type,'lin_kernel')

   if nargin<4,

       omega = Xtrain*Xtrain';

   else

       omega = Xtrain*Xt';

   end

   

elseif strcmp(kernel_type,'poly_kernel')

   if nargin<4,

       omega = (Xtrain*Xtrain'+kernel_pars(1)).^kernel_pars(2);

   else

       omega = (Xtrain*Xt'+kernel_pars(1)).^kernel_pars(2);

   end

   

% elseif strcmp(kernel_type,'wav_kernel')

%     if nargin<4,

%         XXh = sum(Xtrain.^2,2)*ones(1,nb_data);

%         omega = XXh+XXh'-2*(Xtrain*Xtrain');

%        

%         XXh1 = sum(Xtrain,2)*ones(1,nb_data);

%         omega1 = XXh1-XXh1';

%         omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1));

%        

%     else

%         XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1));

%         XXh2 = sum(Xt.^2,2)*ones(1,nb_data);

%         omega = XXh1+XXh2' - 2*(Xtrain*Xt');

%        

%         XXh11 = sum(Xtrain,2)*ones(1,size(Xt,1));

%         XXh22 = sum(Xt,2)*ones(1,nb_data);

%         omega1 = XXh11-XXh22';

%        

%         omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1));

%     end

end

⛄ 运行结果

⛄ 参考文献

[1]刘林. 基于LSSVM的短期交通流预测研究与应用[D]. 西南交通大学, 2011.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
1天前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
16 6
|
1天前
|
算法 调度
基于变异混合蛙跳算法的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图
**摘要:** 实现变异混合蛙跳算法的MATLAB2022a版车间调度优化程序,支持动态调整工件和机器数,输出甘特图。核心算法结合SFLA与变异策略,解决Job-Shop Scheduling Problem,最小化总完成时间。SFLA模拟蛙群行为,分组进行局部搜索和全局信息交换。变异策略增强全局探索,避免局部最优。程序初始化随机解,按规则更新,经多次迭代和信息交换后终止。
|
22小时前
|
算法
基于蝗虫优化的KNN分类特征选择算法的matlab仿真
摘要: - 功能:使用蝗虫优化算法增强KNN分类器的特征选择,提高分类准确性 - 软件版本:MATLAB2022a - 核心算法:通过GOA选择KNN的最优特征以改善性能 - 算法原理: - KNN基于最近邻原则进行分类 - 特征选择能去除冗余,提高效率 - GOA模仿蝗虫行为寻找最佳特征子集,以最大化KNN的验证集准确率 - 运行流程:初始化、评估、更新,直到达到停止标准,输出最佳特征组合
|
1月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
1月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
1月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
1月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
|
1月前
|
算法 调度
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
|
1月前
|
算法 调度 SoC
电动汽车充放电V2G模型(Matlab代码)
电动汽车充放电V2G模型(Matlab代码)

热门文章

最新文章