【lssvm回归预测】基于萤火虫算法优化最小二乘支持向量机lssvm实现数据回归预测附matlab代码

简介: 【lssvm回归预测】基于萤火虫算法优化最小二乘支持向量机lssvm实现数据回归预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

短时交通流预测是实现智能交通控制与管理,交通流状态辨识和实时交通流诱导的前提及关键,也是智能化交通管理的客观需要.到目前为止,它的研究结果都不尽如人意.现有的以精确数学模型为基础的传统预测方法存在计算复杂,运算时间长,需要大量历史数据,预测精度不高等缺点.因此通过研究新型人工智能方法改进短期交通流预测具有一定的现实意义.本文在对现有短期交通流预测模型对比分析及交通流特性研究分析基础上,采用萤火虫算法优化最小二乘支持向量机方法进行短期交通流预测模型,取得较好的效果. 支持向量机是一种新的机器学习算法,建立在统计学习理论的基础上,采用结构风险最小化原则,具有预测能力强,全局最优化以及收敛速度快等特点,相比较以经验风险化为基础的神经网络学习算法有更好的理论依据和更好的泛化性能.对于支持向量机模型而言,其算法相对简单,运算时间短,预测精度较高,比较适用于交通流预测研究,特别是在引入最小二乘理论后,计算简化为求解一个线性方程组,同时精度也能得到保证.,该方法首先利用萤火虫算法算法的全局搜索能力来获取最小二乘支持向量机的惩罚因子和核函数宽度,有效解决了最小二乘支持向量机难以快速精准寻找最优参数的问题.

⛄ 部分代码

function omega = kernel_matrix(Xtrain,kernel_type, kernel_pars,Xt)

% Construct the positive (semi-) definite and symmetric kernel matrix

%

% >> Omega = kernel_matrix(X, kernel_fct, sig2)

%

% This matrix should be positive definite if the kernel function

% satisfies the Mercer condition. Construct the kernel values for

% all test data points in the rows of Xt, relative to the points of X.

%

% >> Omega_Xt = kernel_matrix(X, kernel_fct, sig2, Xt)

%

%

% Full syntax

%

% >> Omega = kernel_matrix(X, kernel_fct, sig2)

% >> Omega = kernel_matrix(X, kernel_fct, sig2, Xt)

%

% Outputs

%   Omega  : N x N (N x Nt) kernel matrix

% Inputs

%   X      : N x d matrix with the inputs of the training data

%   kernel : Kernel type (by default 'RBF_kernel')

%   sig2   : Kernel parameter (bandwidth in the case of the 'RBF_kernel')

%   Xt(*)  : Nt x d matrix with the inputs of the test data

%

% See also:

%  RBF_kernel, lin_kernel, kpca, trainlssvm, kentropy



% Copyright (c) 2011,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.be/sista/lssvmlab


[nb_data,d] = size(Xtrain);



if strcmp(kernel_type,'RBF_kernel'),

   if nargin<4,

       XXh = sum(Xtrain.^2,2)*ones(1,nb_data);

       omega = XXh+XXh'-2*(Xtrain*Xtrain');

       omega = exp(-omega./(2*kernel_pars(1)));

   else

       XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1));

       XXh2 = sum(Xt.^2,2)*ones(1,nb_data);

       omega = XXh1+XXh2' - 2*Xtrain*Xt';

       omega = exp(-omega./(2*kernel_pars(1)));

   end

   

elseif strcmp(kernel_type,'RBF4_kernel'),

   if nargin<4,

       XXh = sum(Xtrain.^2,2)*ones(1,nb_data);

       omega = XXh+XXh'-2*(Xtrain*Xtrain');

       omega = 0.5*(3-omega./kernel_pars).*exp(-omega./(2*kernel_pars(1)));

   else

       XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1));

       XXh2 = sum(Xt.^2,2)*ones(1,nb_data);

       omega = XXh1+XXh2' - 2*Xtrain*Xt';

       omega = 0.5*(3-omega./kernel_pars).*exp(-omega./(2*kernel_pars(1)));

   end

   

% elseif strcmp(kernel_type,'sinc_kernel'),

%     if nargin<4,

%         omega = sum(Xtrain,2)*ones(1,size(Xtrain,1));

%         omega = omega - omega';

%         omega = sinc(omega./kernel_pars(1));

%     else

%         XXh1 = sum(Xtrain,2)*ones(1,size(Xt,1));

%         XXh2 = sum(Xt,2)*ones(1,nb_data);

%         omega = XXh1-XXh2';

%         omega = sinc(omega./kernel_pars(1));

%     end

   

elseif strcmp(kernel_type,'lin_kernel')

   if nargin<4,

       omega = Xtrain*Xtrain';

   else

       omega = Xtrain*Xt';

   end

   

elseif strcmp(kernel_type,'poly_kernel')

   if nargin<4,

       omega = (Xtrain*Xtrain'+kernel_pars(1)).^kernel_pars(2);

   else

       omega = (Xtrain*Xt'+kernel_pars(1)).^kernel_pars(2);

   end

   

% elseif strcmp(kernel_type,'wav_kernel')

%     if nargin<4,

%         XXh = sum(Xtrain.^2,2)*ones(1,nb_data);

%         omega = XXh+XXh'-2*(Xtrain*Xtrain');

%        

%         XXh1 = sum(Xtrain,2)*ones(1,nb_data);

%         omega1 = XXh1-XXh1';

%         omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1));

%        

%     else

%         XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1));

%         XXh2 = sum(Xt.^2,2)*ones(1,nb_data);

%         omega = XXh1+XXh2' - 2*(Xtrain*Xt');

%        

%         XXh11 = sum(Xtrain,2)*ones(1,size(Xt,1));

%         XXh22 = sum(Xt,2)*ones(1,nb_data);

%         omega1 = XXh11-XXh22';

%        

%         omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1));

%     end

end

⛄ 运行结果

⛄ 参考文献

[1]刘林. 基于LSSVM的短期交通流预测研究与应用[D]. 西南交通大学, 2011.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
7天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
7天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
86 14
|
9天前
|
算法 计算机视觉
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
|
9天前
|
编解码 人工智能 算法
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
|
9天前
|
机器学习/深度学习 编解码 并行计算
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)
|
9天前
|
机器学习/深度学习 传感器 边缘计算
【故障诊断】基于时滞反馈随机共振的增强型旋转电机故障诊断(Matlab代码实现)
【故障诊断】基于时滞反馈随机共振的增强型旋转电机故障诊断(Matlab代码实现)
|
9天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
|
9天前
|
运维 算法
【故障诊断】基于最小熵反卷积、最大相关峰度反卷积和最大二阶环平稳盲反卷积等盲反卷积方法在机械故障诊断中的应用研究(Matlab代码实现)
【故障诊断】基于最小熵反卷积、最大相关峰度反卷积和最大二阶环平稳盲反卷积等盲反卷积方法在机械故障诊断中的应用研究(Matlab代码实现)
|
7天前
|
机器学习/深度学习 算法
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)
|
7天前
|
机器学习/深度学习 传感器 算法
【裂纹检测】检测和标记图片中的裂缝(Matlab代码实现)
【裂纹检测】检测和标记图片中的裂缝(Matlab代码实现)

热门文章

最新文章