【lssvm回归预测】基于萤火虫算法优化最小二乘支持向量机lssvm实现数据回归预测附matlab代码

简介: 【lssvm回归预测】基于萤火虫算法优化最小二乘支持向量机lssvm实现数据回归预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

短时交通流预测是实现智能交通控制与管理,交通流状态辨识和实时交通流诱导的前提及关键,也是智能化交通管理的客观需要.到目前为止,它的研究结果都不尽如人意.现有的以精确数学模型为基础的传统预测方法存在计算复杂,运算时间长,需要大量历史数据,预测精度不高等缺点.因此通过研究新型人工智能方法改进短期交通流预测具有一定的现实意义.本文在对现有短期交通流预测模型对比分析及交通流特性研究分析基础上,采用萤火虫算法优化最小二乘支持向量机方法进行短期交通流预测模型,取得较好的效果. 支持向量机是一种新的机器学习算法,建立在统计学习理论的基础上,采用结构风险最小化原则,具有预测能力强,全局最优化以及收敛速度快等特点,相比较以经验风险化为基础的神经网络学习算法有更好的理论依据和更好的泛化性能.对于支持向量机模型而言,其算法相对简单,运算时间短,预测精度较高,比较适用于交通流预测研究,特别是在引入最小二乘理论后,计算简化为求解一个线性方程组,同时精度也能得到保证.,该方法首先利用萤火虫算法算法的全局搜索能力来获取最小二乘支持向量机的惩罚因子和核函数宽度,有效解决了最小二乘支持向量机难以快速精准寻找最优参数的问题.

⛄ 部分代码

function omega = kernel_matrix(Xtrain,kernel_type, kernel_pars,Xt)

% Construct the positive (semi-) definite and symmetric kernel matrix

%

% >> Omega = kernel_matrix(X, kernel_fct, sig2)

%

% This matrix should be positive definite if the kernel function

% satisfies the Mercer condition. Construct the kernel values for

% all test data points in the rows of Xt, relative to the points of X.

%

% >> Omega_Xt = kernel_matrix(X, kernel_fct, sig2, Xt)

%

%

% Full syntax

%

% >> Omega = kernel_matrix(X, kernel_fct, sig2)

% >> Omega = kernel_matrix(X, kernel_fct, sig2, Xt)

%

% Outputs

%   Omega  : N x N (N x Nt) kernel matrix

% Inputs

%   X      : N x d matrix with the inputs of the training data

%   kernel : Kernel type (by default 'RBF_kernel')

%   sig2   : Kernel parameter (bandwidth in the case of the 'RBF_kernel')

%   Xt(*)  : Nt x d matrix with the inputs of the test data

%

% See also:

%  RBF_kernel, lin_kernel, kpca, trainlssvm, kentropy



% Copyright (c) 2011,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.be/sista/lssvmlab


[nb_data,d] = size(Xtrain);



if strcmp(kernel_type,'RBF_kernel'),

   if nargin<4,

       XXh = sum(Xtrain.^2,2)*ones(1,nb_data);

       omega = XXh+XXh'-2*(Xtrain*Xtrain');

       omega = exp(-omega./(2*kernel_pars(1)));

   else

       XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1));

       XXh2 = sum(Xt.^2,2)*ones(1,nb_data);

       omega = XXh1+XXh2' - 2*Xtrain*Xt';

       omega = exp(-omega./(2*kernel_pars(1)));

   end

   

elseif strcmp(kernel_type,'RBF4_kernel'),

   if nargin<4,

       XXh = sum(Xtrain.^2,2)*ones(1,nb_data);

       omega = XXh+XXh'-2*(Xtrain*Xtrain');

       omega = 0.5*(3-omega./kernel_pars).*exp(-omega./(2*kernel_pars(1)));

   else

       XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1));

       XXh2 = sum(Xt.^2,2)*ones(1,nb_data);

       omega = XXh1+XXh2' - 2*Xtrain*Xt';

       omega = 0.5*(3-omega./kernel_pars).*exp(-omega./(2*kernel_pars(1)));

   end

   

% elseif strcmp(kernel_type,'sinc_kernel'),

%     if nargin<4,

%         omega = sum(Xtrain,2)*ones(1,size(Xtrain,1));

%         omega = omega - omega';

%         omega = sinc(omega./kernel_pars(1));

%     else

%         XXh1 = sum(Xtrain,2)*ones(1,size(Xt,1));

%         XXh2 = sum(Xt,2)*ones(1,nb_data);

%         omega = XXh1-XXh2';

%         omega = sinc(omega./kernel_pars(1));

%     end

   

elseif strcmp(kernel_type,'lin_kernel')

   if nargin<4,

       omega = Xtrain*Xtrain';

   else

       omega = Xtrain*Xt';

   end

   

elseif strcmp(kernel_type,'poly_kernel')

   if nargin<4,

       omega = (Xtrain*Xtrain'+kernel_pars(1)).^kernel_pars(2);

   else

       omega = (Xtrain*Xt'+kernel_pars(1)).^kernel_pars(2);

   end

   

% elseif strcmp(kernel_type,'wav_kernel')

%     if nargin<4,

%         XXh = sum(Xtrain.^2,2)*ones(1,nb_data);

%         omega = XXh+XXh'-2*(Xtrain*Xtrain');

%        

%         XXh1 = sum(Xtrain,2)*ones(1,nb_data);

%         omega1 = XXh1-XXh1';

%         omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1));

%        

%     else

%         XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1));

%         XXh2 = sum(Xt.^2,2)*ones(1,nb_data);

%         omega = XXh1+XXh2' - 2*(Xtrain*Xt');

%        

%         XXh11 = sum(Xtrain,2)*ones(1,size(Xt,1));

%         XXh22 = sum(Xt,2)*ones(1,nb_data);

%         omega1 = XXh11-XXh22';

%        

%         omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1));

%     end

end

⛄ 运行结果

⛄ 参考文献

[1]刘林. 基于LSSVM的短期交通流预测研究与应用[D]. 西南交通大学, 2011.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
10月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
414 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
10月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
393 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
1月前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
1月前
|
算法 机器人 数据安全/隐私保护
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
|
1月前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
8天前
|
算法 数据安全/隐私保护
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
本项目实现了一种基于Logistic Map混沌序列的数字信息加解密算法,使用MATLAB2022A开发并包含GUI操作界面。支持对文字、灰度图像、彩色图像和语音信号进行加密与解密处理。核心程序通过调整Logistic Map的参数生成伪随机密钥序列,确保加密的安全性。混沌系统的不可预测性和对初值的敏感依赖性是该算法的核心优势。示例展示了彩色图像、灰度图像、语音信号及文字信息的加解密效果,运行结果清晰准确,且完整程序输出无水印。
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
|
7天前
|
算法
基于PSO粒子群优化的多无人机路径规划matlab仿真,对比WOA优化算法
本程序基于粒子群优化(PSO)算法实现多无人机路径规划,并与鲸鱼优化算法(WOA)进行对比。使用MATLAB2022A运行,通过四个无人机的仿真,评估两种算法在能耗、复杂度、路径规划效果及收敛曲线等指标上的表现。算法原理源于1995年提出的群体智能优化,模拟鸟群觅食行为,在搜索空间中寻找最优解。环境建模采用栅格或几何法,考虑避障、速度限制等因素,将约束条件融入适应度函数。程序包含初始化粒子群、更新速度与位置、计算适应度值、迭代优化等步骤,最终输出最优路径。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于PSO(粒子群优化)改进TCN(时间卷积神经网络)的时间序列预测方法。使用Matlab2022a运行,完整程序无水印,附带核心代码中文注释及操作视频。TCN通过因果卷积层与残差连接处理序列数据,PSO优化其卷积核权重等参数以降低预测误差。算法中,粒子根据个体与全局最优位置更新速度和位置,逐步逼近最佳参数组合,提升预测性能。
|
23天前
|
传感器 算法 数据安全/隐私保护
基于GA遗传优化的三维空间WSN网络最优节点部署算法matlab仿真
本程序基于遗传算法(GA)优化三维空间无线传感网络(WSN)的节点部署,通过MATLAB2022A实现仿真。算法旨在以最少的节点实现最大覆盖度,综合考虑空间覆盖、连通性、能耗管理及成本控制等关键问题。核心思想包括染色体编码节点位置、适应度函数评估性能,并采用网格填充法近似计算覆盖率。该方法可显著提升WSN在三维空间中的部署效率与经济性,为实际应用提供有力支持。

热门文章

最新文章