【智能优化算法-粒子群算法】基于量子粒子群算法求解单目标优化问题附matlab代码

简介: 【智能优化算法-粒子群算法】基于量子粒子群算法求解单目标优化问题附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机

1 内容介绍

量子粒子群优化(QPSO)算法是在经典的粒子群优化(PSO)算法的基础上所提出的一种具有量子行为的粒子群优化算法,具有高效的全局搜索能力。通过求解J.D.Schaffer提出的多峰函数优化问题的实验分析表明,方法具有良好的收敛性和稳定性。

2 部分代码

%% 实验系列

% 量子行为粒子群算法对Sphere函数寻优优化

clear all;

format long;

tic

%% 量子行为的粒子群算法

%% 基本参数

MaxEpochs=1500; %最大迭代次数

D=30; %粒子维数

M=30;%npso-(D/10); %基本种群规模

npso=M+ceil(D/10); %粒子种群规模

aCE0=0.8; %起始CE参数

aCE1=0.5; %终止CE参数

%% 初始化

% 初始化粒子

PL=100;

X_uplimit=PL.*ones(1,D);

X_lowlimit=-1*PL.*ones(1,D);

for i=1:npso

   X(i,:)=PL.*rands(1,D);

end

% load X0_Sphere.mat

% 初始适应值

for i=1:npso

   X(i,D+1)=Sphere(X(i,:));

end

% 初始个体最优和全局最优

X_pbest=X; % 初始个体最优为粒子本身

kg=1;

for k=1:npso

   if X_pbest(k,D+1)<=X_pbest(kg,D+1)

       kg=k;

   end

end

X_gbest=X_pbest(kg,:);

%% 进入迭代

for ep=1:MaxEpochs

% 计算平均最优位置

   C=mean(X_pbest(:,1:D));

   for j=1:npso

       % 计算非最优粒子的势阱中心

       r=rand(1,D);

       ZX(j,:)=r.*X_pbest(j,1:D)+(1-r).*X_gbest(1,1:D);  

   end

% 更新粒子的位置

   aCE=(aCE1-aCE0)*(ep-1)/(MaxEpochs-1)+aCE0;

   for j=1:npso

       if rand<=0.5

           X_GX1(j,:)=ZX(j,:)+aCE.*abs(C-X(j,1:D)).*log(1./rand(1,D));

       else

           X_GX1(j,:)=ZX(j,:)-aCE.*abs(C-X(j,1:D)).*log(1./rand(1,D));

       end

       for p=1:D

           if X_GX1(j,p)<X_lowlimit(1,p) || X_GX1(j,p)>X_uplimit(1,p)

               X_GX1(j,p)=PL*rands(1,1);

           end

       end

   end

   % 计算适应值

   X=X_GX1;

   for k=1:npso

       X(k,D+1)=Sphere(X(k,1:D));

   end  

   % 更新全局最优和局部最优

   for k=1:npso

       if X(k,D+1)<=X_pbest(k,D+1)

           X_pbest(k,:)=X(k,:);

       end

   end

   np=1;

   for ij=1:npso

       if X_pbest(ij,D+1)<=X_pbest(np,D+1)

           np=ij;

       end

   end

   X_gbest=X_pbest(np,:);

   Y(1,ep)=X_gbest(1,D+1);

end

save Y_QPSO_Sphere.mat Y

figure()

plot(1:size(Y,2),Y)

hold on;

figure()

plot(1:size(Y,2),log(Y))

hold on;

3 运行结果

image.gif编辑

4 参考文献

[1]余健, 郭平. 基于MATLAB的量子粒子群优化算法及其应用[J]. 计算机与数字工程, 2007, 35(12):2.

博主简介:擅长智能优化算法神经网络预测信号处理元胞自动机图像处理路径规划无人机雷达通信无线传感器等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关文章
|
10天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
8天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
7天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
12天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
151 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
123 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章