【预测模型】基于BP神经网络、LSTM、GRNN实现风电功率预测附matlab代码

简介: 【预测模型】基于BP神经网络、LSTM、GRNN实现风电功率预测附matlab代码

 1 简介

风电功率预测结果的准确性,不仅关系到风力发电厂的综合运行效率,也与区域运行成本具备直接联系,基于BP神经网络、LSTM、GRNN实现风电功率预测。经过实例分析,证明设计的方法对风电功率的预测结果误差均在最优误差范围内,预测的数值具有更高的价值。

2 部分代码

%% ARMA 预测

clc,clear,close all

load data%导入数据

T=30;

buchang=size(unnamed,1)-T;%预测步长

y = unnamed(1:T);

[m,n]=size(y);

%% %% 3.确定ARMA模型阶数

% ACF和PACF法,确定阶数

figure

subplot(211),autocorr( y );

subplot(212),parcorr( y );

figure

dy = diff( y );

subplot(211),autocorr( dy );

subplot(212),parcorr( dy );

%% ARIMA 模型

Mdl = arima(5,1,0);

EstMdl = estimate(Mdl,y);

res = infer(EstMdl,y); %res即残差

% 模型验证

figure

subplot(2,2,1)

plot(res./sqrt(EstMdl.Variance))

title('Standardized Residuals')

subplot(2,2,2),qqplot(res)

subplot(2,2,3),autocorr(res)

subplot(2,2,4),parcorr(res)

% 预测

[yF,yMSE] = forecast(EstMdl,buchang,'Y0',y);

UB = yF + 1.96*sqrt(yMSE); %95置信区间下限

LB = yF - 1.96*sqrt(yMSE); %95置信区间下限

yF=[unnamed(1:T);yF];

figure(4)

h4 = plot(unnamed,'b');

hold on

h5 = plot(yF,'r','LineWidth',2);

h6 = plot(m+1:m+buchang,UB,'k--','LineWidth',1.5);

plot(m+1:m+buchang,LB,'k--','LineWidth',1.5);

legend('实际幅值','预测幅值');

xlabel('时间序列')

ylabel('幅值')

title('arma预测图')

bp_mse = mean((yF-unnamed).^2);%mse

disp(['ARMA预测的mse=',num2str(bp_mse)])

bp_mae = mean(abs(yF-unnamed));%mae

disp(['ARMA预测的mae=',num2str(bp_mae)])

bp_rmse = sqrt(mean((yF-unnamed).^2));%均方差

disp(['ARMA预测的rmse=',num2str(bp_rmse)])

3 仿真结果

image.gif编辑

image.gif编辑

4 参考文献

[1]丁宇宇, 陈颖, 周海. 基于MATLAB语言的BP神经网络风电功率超短期预测模型[C]// 中国电机工程学会电力系统自动化专业委员会三届一次会议暨2011年学术交流会. 中国电机工程学会, 2011.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

目录
打赏
0
0
0
0
852
分享
相关文章
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
68 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
83 1
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
162 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2023 FasterNet 高效快速的部分卷积块
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2023 FasterNet 高效快速的部分卷积块
98 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2023 FasterNet 高效快速的部分卷积块
|
2月前
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
86 2
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
53 1
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
83 0
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
71 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
RT-DETR改进策略【模型轻量化】| 替换华为的极简主义骨干网络:VanillaNet
RT-DETR改进策略【模型轻量化】| 替换华为的极简主义骨干网络:VanillaNet
97 0