RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构

简介: RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构

一、本文介绍

本文记录的是基于EfficientNet v1的 RT-DETR轻量化改进方法研究EfficientNet采用了创新性的复合缩放方法,通过精心平衡网络宽度深度分辨率来提升性能。本文将EfficientNet的设计优势融入RT-DETR中,提升RT-DETR的性能与效率,使其在目标检测任务中表现更为出色。

本文配置了原模型中的efficientnet-b0efficientnet-b1efficientnet-b2efficientnet-b3efficientnet-b4efficientnet-b5efficientnet-b6efficientnet-b7efficientnet-b8efficientnet-l210种不同大小的模型结构,以满足不同的需求。

模型 参数量 计算量 推理速度
rtdetr-l 32.8M 108.0GFLOPs 11.6ms
Improved 23.7M 60.8GFLOPs -

专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:RT-DETR改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、EfficientNet详解

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

2.1 轻量设计出发点

  • 随着卷积神经网络的发展,模型规模不断扩大,但硬件内存限制使得在追求更高精度的同时需要更好的效率。

  • 传统的卷积神经网络如AlexNetGoogleNetSENet等虽然精度不断提高,但参数过多,面临硬件瓶颈。

  • 同时,在移动设备普及的背景下,也需要设计高效的小型网络,如SqueezeNetsMobileNets等,但对于大型模型的高效设计空间和调优成本问题仍未得到很好解决

因此,EfficientNet旨在研究超大型且能超越现有精度的卷积神经网络的模型效率,通过模型缩放来实现这一目标。

2.2 结构原理

2.2.1 复合缩放方法

提出一种新的复合缩放方法,使用复合系数$\phi$统一缩放网络的宽度、深度和分辨率。具体公式为$$depth: d=\alpha^{\phi}$$$$width: w=\beta^{\phi}$$$$resolution: r=\gamma^{\phi}$$其中$\alpha$、$\beta$、$\gamma$是通过小网格搜索确定的常数,且满足$\alpha \cdot \beta^{2} \cdot \gamma^{2} \approx 2$,$\alpha \geq 1$,$\beta \geq 1$,$\gamma \geq 1$。

这种方法基于观察到网络宽度深度分辨率之间存在相互关联,平衡这三个维度的缩放对于提高模型性能至关重要,而传统的单一维度缩放方法存在局限性。

例如,仅增加网络深度会遇到梯度消失问题,且精度提升会逐渐减小;仅增加宽度或分辨率也会出现精度饱和的情况。通过这种复合缩放方法,可以根据可用资源的增加,按照一定比例同时调整网络的各个维度,从而在保持效率的同时提高模型精度。

在这里插入图片描述

2.2.2 EfficientNet - B0基线网络

通过多目标神经架构搜索开发了新的移动尺寸基线网络EfficientNet - B0

其主要构建模块是移动倒置瓶颈MBConv,并添加了挤压与激励优化。网络结构在不同阶段具有不同的层数、输入分辨率和输出通道数,如起始阶段是一个$Conv3x3$层,输入分辨率为$224x224$,输出通道为$32$,后续阶段包括不同类型的MBConv层卷积层等,从EfficientNet - B0开始,通过上述复合缩放方法,固定$\phi$进行小网格搜索确定$\alpha$、$\beta$、$\gamma$,然后再固定这些系数,通过改变$\phi$来缩放基线网络,得到EfficientNet - B1B7等一系列模型。

2.3 优势

  • 精度方面:在ImageNet数据集上,EfficientNet - B7达到了84.3%的top - 1精度,超越了之前的最佳模型GPipe,同时使用的参数比GPipe少8.4倍。与广泛使用的ResNet - 50相比,EfficientNet - B4在相似的FLOPS下,将top - 1精度从76.3%提高到83.0%(提升了6.7%)。
  • 效率方面:在推理速度上,EfficientNet - B1比ResNet - 152快5.7倍,EfficientNet - B7比GPipe快6.1倍。在计算资源使用上,一般比其他具有相似精度的卷积神经网络减少一个数量级的参数和FLOPS,如EfficientNet - B3使用的FLOPS比ResNeXt - 101少18倍,但精度更高。

论文:https://arxiv.org/pdf/1905.11946
源码:https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet

三、实现代码及RT-DETR修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/145252934

目录
相关文章
|
1月前
|
编解码 异构计算
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
78 9
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
|
1月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
76 3
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
20天前
|
人工智能 安全 网络安全
网络安全领导者有效缓解团队倦怠的四步策略
网络安全领导者有效缓解团队倦怠的四步策略
|
1月前
|
计算机视觉
RT-DETR改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进RT-DETR颈部网络
RT-DETR改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进RT-DETR颈部网络
58 12
RT-DETR改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进RT-DETR颈部网络
|
1月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
71 10
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
|
1月前
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
55 2
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
|
1月前
|
机器学习/深度学习
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
66 11
|
3月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
97 17
|
3月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
3月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
67 10

热门文章

最新文章