机器学习/深度学习

首页 标签 机器学习/深度学习
# 机器学习/深度学习 #
关注
71284内容
如何在阿里ECS云端运行Jupyter Notebook进行机器/深度学习?
本文主要是介绍如何在阿里云上安装jupyter notebook并实现云端访问,在jupyter上进行机器学习或者深度学习。针对没有任何Linux基础的新手所写(因为我也是新手啦!),所以比较详(luo)细(suo),大神勿喷哟!
一文入门卷积神经网络:CNN通俗解析
CNN基础知识介绍及TensorFlow具体实现,对于初学者或者求职者而言是一份不可多得的资料。
DeepMind的AI学会了画画,利用强化学习完全不需人教
如何让计算机自动模仿梵高油画?DeepMind给出了一个强化学习的方法。通过给强化学习算法设定报酬函数,反复调整算法参数,使得报酬最大,DeepMind的AI完全自学地学会了绘画。本文带来大数医达创始人邓侃博士的解读。
| |
来自: 云原生
树莓派 + Docker - 轻松实现人脸识别应用
人脸识别技术已经被广泛应用在众多场景中。今天我们将利用Docker容器在树莓派上快速打造一个人脸识别应用。
诠释数据降维算法:一文讲尽t-分布邻域嵌入算法(t-SNE)如何有效利用
t-分布领域嵌入算法(t-SNE, t-distributed Stochastic Neighbor Embedding )是目前一个非常流行的对高维度数据进行降维的算法, 由Laurens van der Maaten和 Geoffrey Hinton于2008年提出。这个算法已经在机器学习领域
深度学习训练,选择P100就对了
本文使用NVCaffe、MXNet、TensorFlow三个主流开源深度学习框架对P100和P40做了图像分类场景的卷积神经网络模型训练的性能对比,并给出了详细分析,结论是P100比P40更适合深度学习训练场景。
| |
来自: 云原生
利用TFRecord和HDFS准备TensorFlow训练数据
本文将介绍如何将数据转化为TFRecord格式,并且将生成TFRecord文件保存到HDFS中, 这里我们直接使用的是阿里云EMR(E-MapReduce)的HDFS服务。
对比解读五种主流大数据架构的数据分析能力
数据分析工作虽然隐藏在业务系统背后,但是具有非常重要的作用,数据分析的结果对决策、对业务发展有着举足轻重的作用。
专访阿里云异构计算负责人:异构计算,GPU、FPGA、ASIC芯片将三分天下
张献涛表示,“随着FPGA的生态环境的建立和完善、ASIC芯片的逐渐成熟,未来异构计算领域会呈现GPU、FPGA、ASIC芯片三分天下的局面,GPU、FPGA、ASIC芯片都会有自己独特的特长和应用领域。”
利用Python进行市场购物篮分析——入门篇
大数据时代,任何事件之间都可能具有一定的相关性。啤酒和尿不湿有关系吗?今天就带你来看一下,如何用Python来分析购物之间那些潜在的规则。
免费试用