用DataV Atlas探索杭州美食
本指南介绍如何使用DataV Atlas进行数据可视化。首先,通过链接领取试用额度并登录产品控制台。控制台包含示例数据,如“hangzhou_poi_sample”和“hangzhou_districts”。通过简单几步创建地理分析项目,可对数据进行样式配置。示例分析包括各区美食偏好、高评分火锅店定位及杭州美食分布情况,通过SQL查询和可视化技术,帮助理解数据背后的有趣现象。更改底图样式和添加SQL数据源进一步增强分析效果。
图特征工程实践指南:从节点中心性到全局拓扑的多尺度特征提取
本文详细介绍了如何利用NetworkX库从图结构中提取重要特征。首先,通过定义辅助函数设置了图的可视化选项,并以Zachary网络数据集为例进行了可视化展示。接着,文章深入探讨了三类图特征:基于节点的特征(如节点度、中心性等)、基于边的特征(如最短路径、邻域重叠等)以及基于图的特征(如Graphlets、Weisfeiler-Leman特征等)。通过这些特征的提取与分析,可以全面理解网络结构,识别关键节点,分析信息流动模式,并发现潜在的隐藏模式。本文不仅展示了如何应用这些特征来揭示社交网络中的角色和联系,还强调了其在交通网络分析和生物系统研究等领域的广泛应用潜力。
【ACL2024】基于长尾检索知识增强的大语言模型
近日,阿里云人工智能平台PAI与阿里集团安全部内容安全算法团队、华东师范大学何晓丰教授团队合作,在自然语言处理顶级会议ACL2024上发表论文《On the Role of Long-tail Knowledge in Retrieval Augmented Large Language Models》,论文主题为长尾知识检索增强的大语言模型。通过将问题识别为普通可回答和长尾两种性质,让大模型针对性的对长尾问题进行检索文档增强。对于普通可回答的用户提问可以直接通过大模型回答,而不需要进行文档检索增强,从而能增强大模型处理不同类型用户提问的效率。