基于Dify工作流,轻松构建会自我优化的测试智能体
借助Dify工作流,构建可自我优化的AI测试智能体,实现测试用例自动生成、动态策略调整与持续学习。通过自然语言解析、智能数据生成与CI/CD集成,大幅提升测试效率与覆盖率,让测试从手工迈向智能自动化。
数字人平台技术、场景应用优势
数字人企业正引领技术革命,融合AI、CG与NLP,打造虚实交互的“数字生命体”,从效率提升到体验升级,重塑人机共生未来。
构建AI智能体:十九、优化 RAG 检索精度:深入解析 RAG 中的五种高级切片策略
本文详细介绍了RAG(检索增强生成)系统中的文本切片策略。RAG切片是将长文档分割为语义完整的小块,以便AI模型高效检索和使用知识。文章分析了五种切片方法:改进固定长度切片(平衡效率与语义)、语义切片(基于嵌入相似度)、LLM语义切片(利用大模型智能分割)、层次切片(多粒度结构)和滑动窗口切片(高重叠上下文)。作者建议根据文档类型和需求选择策略,如通用文档用固定切片,长文档用层次切片,高精度场景用语义切片。切片质量直接影响RAG系统的检索效果和生成答案的准确性。
会议纪要背后的秘密:好的纪要能让会议减少一半
会议开完责任不清、决策模糊?本文分享一个会议纪要AI生成指令,能从混乱的会议讨论中提取决策事项、分配责任人、明确时间节点。支持DeepSeek、通义千问等国产AI,15分钟生成结构完整的专业纪要,把口头约定变成书面契约,让团队协作更透明高效。
MoE架构:大模型的规模扩展革命
MoE(混合专家)架构通过稀疏激活多个专业化子网络,实现高效计算与大规模模型的结合,提升训练推理效率及模型可扩展性,成为大模型发展的重要范式。