人工智能

首页 标签 人工智能
# 人工智能 #
关注
71939内容
Python 学习资源精选:从入门到精通的高效清单
本文系统梳理Python从入门到精通的学习路径,分阶段推荐优质资源:入门夯实语法,进阶掌握核心特性,定向深耕Web、数据、AI等领域,最终提升工程化能力。精选视频、书籍、项目与工具,助力高效学习。
Python 为何能稳居全场景开发主流语言宝座
Python凭借简洁语法、丰富生态、跨平台兼容及社区与企业双重推动,成为覆盖Web开发、数据分析、人工智能等全场景的“万能钥匙”,兼具低门槛与高效率,稳居编程语言主流地位。
|
6小时前
|
大模型推理与应用术语解释
本系列介绍了大语言模型核心技术:推理实现高效生成,生成式AI创造多样化内容,检索增强生成提升准确性,提示工程优化输入引导,上下文学习实现零样本迁移,代理构建自主智能体,多模态学习融合多种数据形式,语义搜索理解深层意图。这些技术共同推动AI向更智能、更实用演进,广泛应用于内容生成、知识服务与自动化系统,成为现代人工智能发展的核心驱动力。(238字)
|
6小时前
|
MCP对大模型应用落地的价值
MCP构建了AI应用中本地与远程服务通信的标准桥梁,通过统一接口简化集成、扩展任务处理能力,并增强安全合规性,助力AI高效、安全完成复杂任务。
|
6小时前
|
MCP应用场景示例
MCP赋能智能数据分析与办公自动化:分析师输入需求,AI即连多源数据生成报告;办公助手通过MCP获取会议记录、整理并邮件分发,实现高效协同。
|
6小时前
|
大模型优化与压缩术语解释
模型压缩技术(如知识蒸馏、量化、剪枝、稀疏化、低秩分解和权重共享)通过减小模型规模、降低计算与存储开销,实现高效部署。这些方法在保持性能的同时,推动大模型在边缘设备上的广泛应用,是实现轻量化AI的关键路径。(238字)
|
6小时前
|
MCP是什么?为何被称为AI时代的“USB-C”
MCP(模型上下文协议)是AI领域的“通用接口”,像USB-C一样让大模型便捷连接数据源与工具。它通过标准化上下文传递,实现信息互通与任务协同,确保每次调用都具备数据血统、策略与出处管理,推动AI无缝交互与安全可控运行。
|
6小时前
|
大模型基础概念术语解释
大语言模型(LLM)基于Transformer架构,通过海量文本训练,具备强大语言理解与生成能力。其核心组件包括注意力机制、位置编码、嵌入层等,支持万亿级参数规模,展现出涌现与泛化特性。Token为基本处理单元,MoE架构提升效率。模型能力随规模扩大显著跃升,推动AI语言处理发展。
|
6小时前
|
大模型伦理与公平性术语解释
大语言模型中的偏见、公平性、可解释性、安全对齐、人类对齐与隐私保护是AI伦理核心议题。偏见源于训练数据,需通过去偏技术缓解;公平性要求无歧视输出;可解释性提升模型透明度与信任;安全对齐防止有害内容;人类对齐确保价值观一致;隐私保护防范数据泄露。六者共同构成负责任AI的发展基石,需技术与伦理协同推进。(238字)
|
6小时前
|
MCP的核心组件
MCP采用客户端-服务器架构,由MCP主机、客户端和服务器组成。主机承载AI智能体并发起请求;客户端负责请求标准化与安全通信;服务器提供数据、工具和提示,支持AI实时访问外部资源与服务,实现高效交互。
免费试用