MCP的核心组件

简介: MCP采用客户端-服务器架构,由MCP主机、客户端和服务器组成。主机承载AI智能体并发起请求;客户端负责请求标准化与安全通信;服务器提供数据、工具和提示,支持AI实时访问外部资源与服务,实现高效交互。

MCP遵循客户端 - 服务器架构,主要由以下三个核心组件构成:
MCP主机(MCP Hosts)
这是搭载AI智能体的应用系统,如常见的聊天应用、AI驱动的集成开发环境(IDE)或商业智能平台等。它的主要作用是发起请求,当用户在这些应用中提出问题或指令时,MCP主机便开始工作。例如,在一个智能客服聊天应用中,用户输入咨询问题,该应用作为MCP主机,会将这个问题相关的请求发送出去。
MCP 客户端(MCP Clients)
它位于Host应用程序内部,是一个接口层。其主要职责是管理与 MCP服务器的点对点连接,包括请求标准化、响应处理以及安全/身份验证等任务。比如,MCP客户端会将 MCP主机发送过来的请求进行整理和规范,使其符合 MCP 协议的要求,然后再发送给 MCP服务器;同时,它也负责接收MCP服务器返回的响应,并将其处理成 MCP主机能够理解的格式。
MCP 服务器(MCP Servers)
依据MCP标准,公开提供上下文数据、工具或API服务。服务器可以连接各类数据源,包括关系型与NoSQL数据库、各标准API、本地文件乃至代码等。它能够为AI提供结构化的实时相关信息(资源)、使AI能与外部服务交互的可执行函数(工具)以及影响AI响应生成的预定义模板或指令(提示)。例如,当AI需要查询数据库中的某些数据时,MCP服务器会负责连接相应的数据库,并将查询结果返回给AI。

相关文章
|
6月前
|
人工智能 API 定位技术
MCP 开发实战:手把手教你封装高德地图与 arXiv API
本教程为 MCP(Model Context Protocol)开发实战第二阶段,带你从零封装第三方 API 为 AI 模型可用工具。通过高德地图地理编码与 arXiv 论文检索两个实例,涵盖项目搭建、工具声明、资源定义、错误处理等核心内容,助你快速上手 MCP 开发并集成至 Claude 使用。
|
6天前
|
人工智能 API 网络安全
阿里云轻量应用服务器一键部署 OpenClaw 极简教程
2026年AI Agent爆发,OpenClaw(原Moltbot/Clawdbot)成开发者首选“数字贾维斯”。本教程教你用阿里云轻量应用服务器,3步一键部署全天候AI助理
|
2月前
|
人工智能 安全 数据可视化
构建AI智能体:五十、ModelScope MCP广场 · MCP协议 · Cherry Studio:AI应用生产线
本文介绍了AI开发生态中的三个关键组件:CherryStudio可视化开发平台、ModelScope MCP广场和MCP协议标准。CherryStudio作为低代码AI应用开发环境,通过拖拽式界面简化了基于大语言模型的智能体构建;ModelScope MCP广场作为官方MCPServer分发中心,提供各类工具服务的发现与管理;MCP协议则定义了LLM与外部工具的安全连接标准。三者构建了从资源发现、能力连接到应用落地的完整AI开发链条,推动AI开发从手工作坊迈向工业化时代。文章还演示了如何在CherryStu
495 9
|
10月前
|
人工智能 JavaScript 开发工具
MCP详解:背景、架构与应用
模型上下文协议(MCP)是由Anthropic提出的开源标准,旨在解决大语言模型与外部数据源和工具集成的难题。作为AI领域的“USB-C接口”,MCP通过标准化、双向通信通道连接模型与外部服务,支持资源访问、工具调用及提示模板交互。其架构基于客户端-服务器模型,提供Python、TypeScript等多语言SDK,方便开发者快速构建服务。MCP已广泛应用于文件系统、数据库、网页浏览等领域,并被阿里云百炼平台引入,助力快速搭建智能助手。未来,MCP有望成为连接大模型与现实世界的通用标准,推动AI生态繁荣发展。
8416 66
|
7月前
|
人工智能 安全 API
MCP协议的具体技术实现原理
MCP(Model Context Protocol)是由Anthropic提出的开放协议,旨在标准化大语言模型(LLM)与外部工具、数据源的交互方式。通过客户端-服务器架构与JSON-RPC通信,实现工具的动态发现、安全调用与灵活扩展,提升LLM的实用性与集成效率。
|
3月前
|
数据采集 人工智能 安全
2025 年主流数据中台系统推荐,企业数据系统建设方案
摘要:在数字化转型中,数据中台是企业释放数据价值的核心载体。本文聚焦2025年主流数据中台系统,从全链路治理能力、部署灵活性、业务适配性三大维度,对比瓴羊Dataphin、腾讯WeData等产品的核心优势与适用场景,结合行业案例覆盖度、用户评价、权威认证分析市场表现。研究发现,各类产品特色鲜明,如瓴羊Dataphin兼具阿里方法论与AI能力,字节Dataleap擅长实时处理。文章提出企业选型需遵循业务目标导向、能力匹配、长期适配原则,明确建设路径。数据中台未来将呈现AI融合、轻量与专业并存等趋势,其核心价值始终是“以数据服务业务”,助力企业数字化转型。
|
11月前
|
域名解析 数据安全/隐私保护 开发者
站长实战指南:从域名注册到备案,国内建站必知事项
本文详细介绍了域名注册、备案及解析的全流程,涵盖国内服务商(如阿里云、腾讯云)的域名选购、实名认证、费用参考及避坑建议。同时解析了域名备案的具体步骤与注意事项,并对比了备案与免备案域名的优劣势。针对不同需求,提供了大陆备案和香港/海外免备案的选择方案。最后提醒政策风险,建议企业优先备案,个人开发者根据业务场景灵活选择,确保网站合法合规运行。
2670 3
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
53_多模态LLM:图像理解的新范式
在人工智能技术快速发展的今天,单一模态的语言模型已经无法满足日益复杂的应用需求。2025年,多模态大型语言模型(MLLM)的崛起标志着AI技术进入了一个新的发展阶段,特别是在图像理解与文本生成的结合方面取得了突破性进展。本文将深入剖析多模态LLM的技术原理、架构设计、性能评估及实际应用案例,探讨视觉-语言融合技术如何重塑AI应用的边界,以及在未来发展中面临的挑战与机遇。