向量嵌入的天花板与AI检索的模式更迭
本文提出突破传统“单向量嵌入+ANN”检索范式,构建多结构协同的下一代AI检索框架。通过多通道嵌入、组合键兜底、知识图推理、程序化计划与生成-校验闭环,实现高可信、可解释、可验证的智能检索,应对复杂任务中的信息漏检与推理难题,推动RAG迈向结构化、可编程的认知系统。
MongoDB 核心概念解析
MongoDB 是一款流行的 NoSQL 数据库,以 BSON 文档模型为核心,支持灵活数据结构、水平扩展与高效查询。本文解析其数据模型、存储机制、扩展架构及关键特性,助你掌握现代应用开发中处理非结构化数据的关键技术。
高级RAG优化手册:3招解决检索不准和查询模糊
本文深入解析RAG(检索增强生成)技术的核心优化方法,涵盖背景、架构与实践。RAG通过整合外部知识库,弥补大语言模型在实时性、准确性和专业性上的不足,广泛应用于企业场景。文章系统讲解RAG如何解决知识静态、生成幻觉与专业深度不足等问题,并剖析其离线索引与在线生成的闭环流程。此外,还介绍了高级优化策略,如查询重写、混合检索与结果重排序,助力突破RAG应用瓶颈。
Oracle数据库创建表空间和索引的SQL语法示例
以上SQL语法提供了一种标准方式去组织Oracle数据库内部结构,并且通过合理使用可以显著改善查询速度及整体性能。需要注意,在实际应用过程当中应该根据具体业务需求、系统资源状况以及预期目标去合理规划并调整参数设置以达到最佳效果。
RAG效果不佳?先别急着微调模型,这几个关键节点才是优化重点
本文深入探讨了RAG(Retrieval Augmented Generation)技术的实现细节与优化策略,指出在AI应用开发中,RAG常被视为黑盒导致问题定位困难。文章从文档分块(Chunking)、索引增强(语义增强与反向HyDE)、编码(Embedding)、混合检索(Hybrid Search)到重排序(Re-Ranking)等关键环节进行了详细解析,强调需结合具体场景对各模块进行调优,以提升召回率与精确率的平衡,并倡导从快速使用走向深度优化的实践路径。
十年大厂员工终明白:MySQL性能优化的尽头,是对B+树的极致理解
存储引擎是数据库的核心组件,负责数据的存储与管理。常见存储引擎如MySQL的InnoDB采用B+树结构,以优化读取性能,支持高效查询、范围检索和有序遍历。相比哈希表和B树,B+树通过减少I/O次数,提升大规模数据下的查询效率。本文深入解析B+树的原理、优势及其在MySQL中的应用。