基于深度学习的暴力行为识别系统
随着城市化进程加快,传统安防难以应对暴力事件。基于深度学习的暴力行为识别系统,融合YOLOv8、Python与多模态数据,实现高精度、实时检测,提升公共安全响应效率,助力智慧城市建设。
基于深度学习的驾驶员行为检测系统
本研究聚焦基于深度学习的驾驶员行为检测系统,针对传统传感器方法局限,提出融合YOLOv8与计算机视觉的新方案,实现对疲劳、分心驾驶等行为的精准实时识别,提升行车安全,推动智能交通与自动驾驶发展。
基于深度学习的车牌识别系统
在智能交通快速发展背景下,传统车牌识别技术受限于复杂环境,难以满足高精度需求。深度学习凭借强大特征学习能力,显著提升识别准确率与鲁棒性,成为主流技术方向。本文综述基于YOLOv8等先进模型的研究进展,探讨系统实现关键步骤,推动智慧交通与城市治理智能化升级。
基于深度学习YOLO12的汽车损伤检测系统
针对汽车损伤检测效率低、主观性强等问题,本研究基于YOLOv12提出自动化检测系统,融合区域注意力与R-ELAN网络,提升小损伤识别精度与多场景适应性,实现快速、精准、标准化评估,推动保险、二手车等产业智能化升级。