【预测模型-RBF】基于径向基神经网络实现数据分类附matlab代码

简介: 【预测模型-RBF】基于径向基神经网络实现数据分类附matlab代码

1 内容介绍

随着现代信息技术的迅速发展,许多领域都积累了大量的数据。我们渴望发现潜在于这些数据中的知识与规律。正是这一需求造就了数据挖掘学科的兴起及数据挖掘技术的发展。作为一个多学科交叉的综合性领域,数据挖掘涉及了数据库、统计学、机器学习、高性能计算、模式识别、神经网络和数据可视化等学科。数据分类与预测作为一种重要的挖掘技术有着广泛的应用。在这一研究方向,目前已提出了多种分类方法(如决策树归纳分类、贝叶斯分类、神经网络分类和K-最邻近分类等)和一些预测技术(如线性回归、非线性回归等)。然而,尚未发现有一种方法对所有数据的处理都优于其他方法[1]。 由于时间序列数据库的日趋庞大及其挖掘的潜在意义,目前,时序数据挖掘研究已成为一个热点;然而,时间序列数据的非线性混沌特点,使得对它的挖掘成为难题。本文在分析与比较以上几种分类及预测方法的基础上,引入了径向基函数神经网络(Radial Basis Function Neural Network,简称RBFNN)对时间序列数据进行预测。

2 仿真代码

%%  清空环境变量

warning off             % 关闭报警信息

close all               % 关闭开启的图窗

clear                   % 清空变量

clc                     % 清空命令行


%%  导入数据

res = xlsread('数据集.xlsx');


%%  划分训练集和测试集

temp = randperm(357);


P_train = res(temp(1: 240), 1: 12)';

T_train = res(temp(1: 240), 13)';

M = size(P_train, 2);


P_test = res(temp(241: end), 1: 12)';

T_test = res(temp(241: end), 13)';

N = size(P_test, 2);


%%  数据归一化

[p_train, ps_input] = mapminmax(P_train, 0, 1);

p_test  = mapminmax('apply', P_test, ps_input);

t_train = ind2vec(T_train);

t_test  = ind2vec(T_test );


3 运行结果

4 参考文献

[1]胡浩民. 基于RBF神经网络并行学习模型的数据分类及预测研究[D]. 上海师范大学, 2003.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关文章
|
8天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
26天前
|
网络协议 安全 网络安全
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
95 1
|
30天前
|
监控 安全 BI
什么是零信任模型?如何实施以保证网络安全?
随着数字化转型,网络边界不断变化,组织需采用新的安全方法。零信任基于“永不信任,永远验证”原则,强调无论内外部,任何用户、设备或网络都不可信任。该模型包括微分段、多因素身份验证、单点登录、最小特权原则、持续监控和审核用户活动、监控设备等核心准则,以实现强大的网络安全态势。
128 2
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
2月前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
134 2
|
2月前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
439 1
|
2月前
|
网络协议 算法 网络性能优化
计算机网络常见面试题(一):TCP/IP五层模型、TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议
计算机网络常见面试题(一):TCP/IP五层模型、应用层常见的协议、TCP与UDP的区别,TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议、ARP协议
|
2月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
110 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】