DL之NN/Average_Darkness/SVM:手写数字图片识别(本地数据集50000训练集+数据集加4倍)比较3种算法Average_Darkness、SVM、NN各自的准确率

简介: DL之NN/Average_Darkness/SVM:手写数字图片识别(本地数据集50000训练集+数据集加4倍)比较3种算法Average_Darkness、SVM、NN各自的准确率

目录


数据集下载以及展示


代码实现


设计思路及代码


1、图片灰度平均值识别分类


2、SVM算法


3、神经网络


4、总结



数据集下载以及展示

image.png

     在上图中右侧显示了一张数字1的图片,而右侧显示了这个图片所对应的像素矩阵,MNIST数据集提供了4个下载文件。

     对手写数据集50000张图片实现阿拉伯数字0~9识别,并且对结果进行分析准确率。从这个页面获得的手写数字的MNIST数据库具有60000个示例,包括50000张图片训练集和10000张图片测试集。它是从NIST获得的更大集合的子集。数字已被规格化,并以固定大小的图像为中心。

    手写数字识别也是比较常见的例子了,这个数据集包含有60000张用于训练的手写数字的图片,10000张用于测试的图片,所有图片的尺寸都已经被标准化了,并且,尺寸为2828.每个像素值0~1区间内的值,其中0代表白色,1代表黑色,区间内的值表示灰色。为了简化,每张图片已经被转换成一个 1728的一维数组,表示784个特征(28'28)。

手写数字数据集下载:http://yann.lecun.com/exdb/mnist/


代码实现


#查看手写数字图片数据集的大小等参数

import mnist_loader

import network

training_data, validation_data, test_data = mnist_loader.load_data_wrapper()   #调用mnist_loader文件的load_data_wrapper函数,加载data/mnist.pkl.gz数据集

print("training_data")  

print(type(training_data))

print(list(training_data))        #list

print(len(training_data))         #长度

print(training_data[0][0].shape)  #x的维度784

print(training_data[0][1].shape)  #y的维度10



设计思路及代码

1、图片灰度平均值识别分类


首先,利用图片本身的属性,图片的灰度平均值进行识别分类,我运行出来的准确率是22%左右

利用图片的灰度平均值来进行分类实现手写图片识别(数据集50000张图片)——Jason niu

image.png


2、SVM算法


其次,利用SVM算法,我运行出来的准确率是93%左右,具体代码请点击

SVM:利用SVM算法实现手写图片识别(数据集50000张图片)—Jason niu


3、神经网络


最后,利用深度学习之神经网络,我运行出来的准确率是94%左右,具体代码请点击

NN:利用深度学习之神经网络实现手写数字识别(数据集50000张图片)—Jason niu

image.png



1、神经网络进行手写数字图片识别原理


image.png


损失函数

image.png




4、总结


最后,我们发现神经网络和SVM的算法学习质量非常高,而传统的灰度平均值算法则差强人意!


相关文章

DL之NN:利用调用自定义神经网络network.py文件(调用mnist_loader.py文件的load_data_wrapper函数,加载mnist.pkl.gz数据集)实现手写图片识别,准确率94%

Average_Darkness/SVM:手写数字识别(数据集50000张图片训练集)比较Average_Darkness、SVM各自的准确率

相关文章
|
5月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
|
3月前
|
数据采集 机器学习/深度学习 算法
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
|
4月前
|
机器学习/深度学习 数据采集 监控
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient
**神经网络与AI学习概览** - 探讨神经网络设计,包括MLP、RNN、CNN,激活函数如ReLU,以及隐藏层设计,强调网络结构与任务匹配。 - 参数初始化与优化涉及Xavier/He初始化,权重和偏置初始化,优化算法如SGD、Adam,针对不同场景选择。 - 学习率调整与正则化,如动态学习率、L1/L2正则化、早停法和Dropout,以改善训练和泛化。
44 0
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient
|
5月前
|
存储 算法 Java
Java数据结构与算法:用于高效地存储和检索字符串数据集
Java数据结构与算法:用于高效地存储和检索字符串数据集
|
16天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
2天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
2天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
2天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
2天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
13 3
|
22小时前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。