基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真

简介: ### 算法简介1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。2. **算法运行软件版本**:Matlab 2017b。3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。整个算法流程图见下图。

1.算法运行效果图预览
(完整程序运行后无水印)

1.gif
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

2.算法运行软件版本
matlab2017b

3.部分核心程序
(完整版代码包含中文注释和操作步骤视频)

```function [Ic,Xmin3,Xmax3,Ymin3,Ymax3] = func_merge(I,Trafficxy,Smj,SCALE);

%提取交通标志的中心点,判断是否为同一个标志
for i = 1:length(Trafficxy)
Xmin(i)= min(Trafficxy{i}(:,1));
Xmax(i)= max(Trafficxy{i}(:,1));
Ymin(i)= min(Trafficxy{i}(:,2));
Ymax(i)= max(Trafficxy{i}(:,2));
Xc(i) = (Xmin(i)+Xmax(i))/2;
Yc(i) = (Ymin(i)+Ymax(i))/2;
end

%重合点合并
Xmin2=[];
Xmax2=[];
Ymin2=[];
Ymax2=[];

if length(Xc)>1
indx = 0;
for i = 1:length(Xc)
tmps=[];
for j = 1:length(Xc)
if sqrt(double((Xc(i) - Xc(j))^2 + (Yc(i) - Yc(j))^2))<=20
tmps=[tmps,j];
end
end
Xmin2(i) = mean(Xmin(tmps));
Xmax2(i) = mean(Xmax(tmps));
Ymin2(i) = mean(Ymin(tmps));
Ymax2(i) = mean(Ymax(tmps));
end
%根据XYi的相似性进行合并
else
Xmin2= Xmin;
Xmax2= Xmax;
Ymin2= Ymin;
Ymax2= Ymax;
end

%%
index = 0;
for i = 1:length(Xmin2)
SS = abs(Ymin2(i)-Ymax2(i))*abs(Xmin2(i)-Xmax2(i))
if SS>Smj
index = index + 1;
Ic{index} = I(Ymin2(i)-SCALE:Ymax2(i)+SCALE,Xmin2(i)-SCALE:Xmax2(i)+SCALE,:);
Xmin3(index) = (Xmin(i));
Xmax3(index) = (Xmax(i));
Ymin3(index) = (Ymin(i));
Ymax3(index) = (Ymax(i));
end
end
10_044m

```

4.算法理论概述
4.1 MSER
MSER是一种用于检测显著区域的技术,它能够提取图像中的稳定区域,这些区域在不同尺度上都是稳定的。MSER对于光照变化具有鲁棒性,这使得它非常适合于交通标志检测。MSER算法基于一个关键概念:对于给定的阈值t,图像中的每一个像素点都可以被标记为前景或背景。随着阈值t的变化,图像中的区域也会随之发生变化。MSER区域定义为在一定范围内,即使阈值变化也不会发生分裂或合并的区域。

image.png

4.2 HOG特征提取
HOG特征是一种广泛应用于物体检测领域的特征描述符。它通过计算图像中小区域(称为cell)的梯度直方图来捕捉局部纹理信息,这些信息对于识别特定物体非常有用。

HOG特征提取包括以下步骤:

图像归一化:将图像缩放到固定大小。
梯度计算:计算每个像素的梯度幅度和方向。
细胞分区:将图像分割成小的单元格(cell)。
梯度直方图:在每个单元格内统计梯度方向直方图。
块标准化:将相邻的单元格组合成块(block),并对每个块内的直方图进行归一化。

image.png

4.3 SVM
SVM试图找到一个超平面,使得两类样本之间的间隔最大化。对于线性可分的情况,SVM寻找一个决策边界w⊤x+b=0,其中w是法向量,b是偏置项。

image.png

整个算法流程图如下图所示:

10.jpeg

相关文章
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
2天前
|
算法 决策智能
基于禁忌搜索算法的VRP问题求解matlab仿真,带GUI界面,可设置参数
该程序基于禁忌搜索算法求解车辆路径问题(VRP),使用MATLAB2022a版本实现,并带有GUI界面。用户可通过界面设置参数并查看结果。禁忌搜索算法通过迭代改进当前解,并利用记忆机制避免陷入局部最优。程序包含初始化、定义邻域结构、设置禁忌列表等步骤,最终输出最优路径和相关数据图表。
|
2天前
|
编解码 算法 数据挖掘
基于MUSIC算法的六阵元圆阵DOA估计matlab仿真
该程序使用MATLAB 2022a版本实现基于MUSIC算法的六阵元圆阵DOA估计仿真。MUSIC算法通过区分信号和噪声子空间,利用协方差矩阵的特征向量估计信号到达方向。程序计算了不同角度下的MUSIC谱,并绘制了三维谱图及对数谱图,展示了高分辨率的DOA估计结果。适用于各种形状的麦克风阵列,尤其在声源定位中表现出色。
|
2天前
|
数据采集 算法 5G
基于稀疏CoSaMP算法的大规模MIMO信道估计matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
该研究采用MATLAB 2022a仿真大规模MIMO系统中的信道估计,利用压缩感知技术克服传统方法的高开销问题。在稀疏信号恢复理论基础上,通过CoSaMP等算法实现高效信道估计。核心程序对比了LS、OMP、NOMP及CoSaMP等多种算法的均方误差(MSE),验证其在不同信噪比下的性能。仿真结果显示,稀疏CoSaMP表现优异。
10 2
|
8天前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
5天前
|
算法 数据挖掘
基于粒子群优化算法的图象聚类识别matlab仿真
该程序基于粒子群优化(PSO)算法实现图像聚类识别,能识别0~9的数字图片。在MATLAB2017B环境下运行,通过特征提取、PSO优化找到最佳聚类中心,提高识别准确性。PSO模拟鸟群捕食行为,通过粒子间的协作优化搜索过程。程序包括图片读取、特征提取、聚类分析及结果展示等步骤,实现了高效的图像识别。
|
1月前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
1月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
3天前
|
算法 数据安全/隐私保护
织物图像的配准和拼接算法的MATLAB仿真,对比SIFT,SURF以及KAZE
本项目展示了织物瑕疵检测中的图像拼接技术,使用SIFT、SURF和KAZE三种算法。通过MATLAB2022a实现图像匹配、配准和拼接,最终检测并分类织物瑕疵。SIFT算法在不同尺度和旋转下保持不变性;SURF算法提高速度并保持鲁棒性;KAZE算法使用非线性扩散滤波器构建尺度空间,提供更先进的特征描述。展示视频无水印,代码含注释及操作步骤。
|
1月前
|
资源调度 算法
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。