【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】

简介: 【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】

一、设计要求

要求完成以下功能:

1.能够导入包,能够读取数据集文件audit_risk和customer上运用决策树算法进行分类预测。

2.能够将指定的信息从文件中删除。

3.能够可视化数据并将结果显示在屏幕上。

4.能够数据预处理。

5.能够数据划分、模型训练、效果评估。

6.能够进行预测病显示预测结果。


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 决策树 ” 获取。👈👈👈


二、设计思路

1.导入所需的库和读取数据

首先,导入需要使用的Python库,包括pandas、numpy、scikit-learn、matplotlib和seaborn。接着,使用pandas读取客户信息数据集(customer.csv)和审计风险数据集(audit_risk.csv),并将其加载到数据框中。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 决策树 ” 获取。👈👈👈

   import pandas as pd
   import numpy as np
   from sklearn.model_selection import train_test_split
   from sklearn.tree import DecisionTreeClassifier
   from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
   import matplotlib.pyplot as plt
   import seaborn as sns
   customer_df = pd.read_csv('customer.csv')
   audit_risk_df = pd.read_csv('audit_risk.csv')


数据预处理

数据预处理是数据分析和机器学习中非常关键的一步。首先,检查数据集中是否存在缺失值,并使用前向填充法填充缺失值,以保证数据的完整性。接着,将客户数据中的婚姻状况和性别字段转换为数值型,以便模型能够正确处理这些分类变量。最后,确保审计风险数据集中所有特征均为数值类型,填充转换后的缺失值。

   # 检查缺失值
   print("客户数据缺失值:\n", customer_df.isnull().sum())
   print("审计风险数据缺失值:\n", audit_risk_df.isnull().sum())
   # 填充缺失值()
   customer_df.fillna(method='ffill', inplace=True)
   # 将分类变量转换为数值变量
   customer_df['marital_status'] = customer_df['marital_status'].map({'M': 1, 'S': 0})
   # 确保所有数据都是数值类型
   for column in audit_risk_df.columns:
       # 略。。。。 略。。。。
       # 略。。。。 略。。。。
       # 略。。。。 略。。。。
       # 略。。。。 略。。。。
   # 填充转换后的缺失值
   audit_risk_df.fillna(method='ffill', inplace=True)

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 决策树 ” 获取。👈👈👈

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 决策树 ” 获取。👈👈👈


3.数据划分和模型训练

将审计风险数据集分为特征和标签两部分。特征包括除“Risk”外的所有列,标签为“Risk”列。然后,将数据集划分为训练集和测试集,以70%的数据作为训练集,30%的数据作为测试集。使用决策树分类算法对训练集数据进行模型训练。

   # 选择特征和标签
   features = audit_risk_df.drop(columns=['Risk'])
   labels = audit_risk_df['Risk']
   # 数据划分
   X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.3, random_state=42)
   # 构建决策树模型
   # 略。。。。 略。。。。
   # 预测
   y_pred = clf.predict(X_test)

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 决策树 ” 获取。👈👈👈


  1. 效果评估
    使用测试集数据对训练好的模型进行预测,并生成混淆矩阵、分类报告和准确率等评估指标。通过这些评估指标,可以了解模型的预测效果和性能。
   # 显示评估结果
   print("混淆矩阵:\n", confusion_matrix(y_test, y_pred))
   print("分类报告:\n", classification_report(y_test, y_pred))
   print("准确率:", accuracy_score(y_test, y_pred))

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 决策树 ” 获取。👈👈👈


三、模型预测

对数据和模型结果进行可视化展示,包括特征重要性图、混淆矩阵热图和审计风险总数分布图。这些图表可以帮助我们更直观地了解数据和模型的表现。

   # 绘制特征重要性
   plt.figure(figsize=(12, 8))
   feature_importances = pd.Series(clf.feature_importances_, index=features.columns)
   feature_importances.nlargest(10).plot(kind='barh')
   plt.title('特征重要性')
   plt.show()

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 决策树 ” 获取。👈👈👈

   # 绘制混淆矩阵
   plt.figure(figsize=(8, 6))
   conf_matrix = confusion_matrix(y_test, y_pred)
   sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues')
   plt.title('混淆矩阵')
   plt.xlabel('预测值')
   plt.ylabel('实际值')
   plt.show()

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 决策树 ” 获取。👈👈👈


绘制审计风险总数的分布


根据用户指定的条件删除数据中的特定记录,并保存修改后的数据。以下示例代码删除年收入在$10K以下的客户,并将修改后的数据保存到新的文件中。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 决策树 ” 获取。👈👈👈

   # 删除指定信息
   def delete_info(df, condition):
       return df.drop(df[condition].index)

   # 删除年收入在$10K以下的客户
   customer_df = delete_info(customer_df, customer_df['yearly_income'] == '$10K - $30K')
   # 略。。。。 略。。。。
  
   # 保存修改后的数据
   customer_df.to_csv('customer_modified.csv', index=False)


预测新数据

对新数据进行预测,并展示预测结果。以下代码使用测试集的前五行数据作为新数据示例,进行预测并展示预测结果。预测结果被保存到文件中,以便用户查看和分析。

   # 进行预测并显示预测结果
   new_data = X_test.iloc[:5]  # 这里使用测试集的前5行数据作为新数据示例
   predictions = clf.predict(new_data)
   print("新数据的预测结果:\n", predictions)

   # 将结果保存到文件
   result_df = pd.DataFrame(new_data)
   result_df['Prediction'] = predictions
   # 略。。。。 略。。。。


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 决策树 ” 获取。👈👈👈

相关文章
|
6天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
115 55
|
25天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
77 4
|
22天前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
124 67
|
22天前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
115 61
|
24天前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
104 63
|
16天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
97 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
4天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
22 3
|
25天前
|
机器学习/深度学习 算法 Python
随机森林算法是一种强大的集成学习方法,通过构建多个决策树并综合其结果进行预测。
随机森林算法是一种强大的集成学习方法,通过构建多个决策树并综合其结果进行预测。本文详细介绍了随机森林的工作原理、性能优势、影响因素及调优方法,并提供了Python实现示例。适用于分类、回归及特征选择等多种应用场景。
48 7
|
1月前
|
机器学习/深度学习 算法 大数据
蓄水池抽样算法详解及Python实现
蓄水池抽样是一种适用于从未知大小或大数据集中高效随机抽样的算法,确保每个元素被选中的概率相同。本文介绍其基本概念、工作原理,并提供Python代码示例,演示如何实现该算法。
31 1
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
79 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
下一篇
DataWorks