DL:深度学习(神经网络)的简介、基础知识(神经元/感知机、训练策略、预测原理)、算法分类、经典案例应用之详细攻略

简介: DL:深度学习(神经网络)的简介、基础知识(神经元/感知机、训练策略、预测原理)、算法分类、经典案例应用之详细攻略

目录


深度学习(神经网络)的简介


1、深度学习浪潮兴起的三大因素


深度学习(神经网络)的基础知识(相关概念、训练策略)


1、神经网络的基础知识


2、神经元的结构


3、感知机


4、万能逼近定理


5、神经网络训练


6、神经网络学习


7、神经网络的前馈运算与反向传播


8、激活函数


深度学习(神经网络)的算法分类


1、常用的神经网络模型概览


深度学习(神经网络)的经典案例应用



深度学习(神经网络)的简介


      深度学习(Deep Learning, DL)或阶层学习(hierarchical learning)是机器学习的技术和研究领域之一,通过建立具有阶层结构的人工神经网络(Artifitial Neural Networks, ANNs),在计算系统中实现人工智能  。由于阶层ANN能够对输入信息进行逐层提取和筛选,因此深度学习具有表征学习(representation learning)能力 ,可以实现端到端的监督学习和非监督学习 。此外,深度学习也可参与构建强化学习(reinforcement learning)系统,形成深度强化学习  。


      深度学习所使用的阶层ANN具有多种形态,其阶层的复杂度被通称为“深度”  。按构筑类型,深度学习的形式包括多层感知器、卷积神经网络、循环神经网络、深度置信网络和其它混合构筑  。深度学习使用数据对其构筑中的参数进行更新以达成训练目标,该过程被通称为“学习”  。学习的常见方法为梯度下降算法及其变体 ,一些统计学习理论被用于学习过程的优化 [9]  。


       在应用方面,深度学习被用于对复杂结构和大样本的高维数据进行学习,按研究领域包括计算机视觉、自然语言处理、生物信息学、自动控制等,且在人像识别、机器翻译、自动驾驶等现实问题中取得了成功。


1、深度学习浪潮兴起的三大因素

海量的数据

不断提升的算法能力

高性能计算硬件的实现:GPU、TPU


深度学习(神经网络)的基础知识(相关概念、训练策略)


      深度学习的实质是构建具有多个隐藏层的机器学习模型,通过海量的训练数据来学习更有用的特征,从而最终提升分类或预测的准确性。“深度模型”是手段,“表示学习”是目的。

      深度学习与传统的浅层学习的不同在于:


(1) 强调了模型结构的深度,有2层以上的隐藏层;

(2) 明确突出了表示学习的重要性。通过逐层特征变换,将样本在原空间的特征表示变换到一个新的特征空间,使分类或预测更加容易。

image.png

DL之DNN优化技术:神经网络算法简介之GD/SGD算法的简介、代码实现、代码调参之详细攻略

DL之DNN:BP类神经网络理解之不需要额外任何文字,只需要八张图讲清楚BP类神经网络的工作原理


1、神经网络的基础知识


神经元

感知机

激活函数:Sigmoid、tanh、ReLU、Leaky ReLU、ELU、Softmax。

多层感知机:

万能逼近定理:


2、神经元的结构


生物神经元包括细胞体和突起两个部分,突起又包括树突(接收信号)和轴突(传出信号)。

轴突记录了神经元间联系的强弱。只有达到一定的兴奋程度,神经元才向外界传输信息。

神经元之间的信号通过突触传递。

image.png


3、感知机

DL之Perceptron:Perceptron感知器(感知机/多层感知机/人工神经元)的简介、原理、案例应用(相关配图)之详细攻略



4、万能逼近定理


(Universal approximation theorem)


只需一个包含单个隐藏层的前馈神经网络,即可逼近任意一个连续函数。

尽管仅有一个隐藏层的前馈网络足以表示任何函数,但是该隐藏层的神经元数目可能非常多,从而导致网络无法学习或正确泛化。


5、神经网络训练


(1)、损失函数:

平均损失函数

绝对值损失函数

交叉熵损失函数:softmax回归,独热编码。


(2)、优化目标


(3)、梯度下降:


梯度下降批次训练策略:

          批次梯度下降(Batch Gradient Descent)、

          随机梯度下降(Stochastic Gradient Descent)、

          小批次梯度下降(Mini-batch Gradient Descent)、

DL之DNN优化技术:神经网络算法简介之梯度下降算法(GD算法)中相关概念(方向导数/梯度)、目标函数、其他常见损失函数求梯度(求导)案例之详细攻略


梯度下降各种优化算法:Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam

(4)、反向传播法:计算图解释


1、神经网络训练的优化目标

image.png







相关文章
|
2月前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
169 26
|
1月前
|
机器学习/深度学习 PyTorch TensorFlow
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic,深度学习探索者。深耕TensorFlow与PyTorch,分享框架对比、性能优化与实战经验,助力技术进阶。
|
2月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
294 0
|
1月前
|
监控 负载均衡 安全
WebSocket网络编程深度实践:从协议原理到生产级应用
蒋星熠Jaxonic,技术宇宙中的星际旅人,以代码为舟、算法为帆,探索实时通信的无限可能。本文深入解析WebSocket协议原理、工程实践与架构设计,涵盖握手机制、心跳保活、集群部署、安全防护等核心内容,结合代码示例与架构图,助你构建稳定高效的实时应用,在二进制星河中谱写极客诗篇。
WebSocket网络编程深度实践:从协议原理到生产级应用
|
2月前
|
机器学习/深度学习 人工智能 算法
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic带你深入卷积神经网络(CNN)核心技术,从生物启发到数学原理,详解ResNet、注意力机制与模型优化,探索视觉智能的演进之路。
342 11
|
2月前
|
存储 并行计算 算法
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
153 4
|
2月前
|
安全 测试技术 虚拟化
VMware-三种网络模式原理
本文介绍了虚拟机三种常见网络模式(桥接模式、NAT模式、仅主机模式)的工作原理与适用场景。桥接模式让虚拟机如同独立设备接入局域网;NAT模式共享主机IP,适合大多数WiFi环境;仅主机模式则构建封闭的内部网络,适用于测试环境。内容简明易懂,便于理解不同模式的优缺点与应用场景。
350 0
|
25天前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
148 0
|
1月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
121 2
|
2月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
179 3

热门文章

最新文章