DL:深度学习(神经网络)的简介、基础知识(神经元/感知机、训练策略、预测原理)、算法分类、经典案例应用之详细攻略

简介: DL:深度学习(神经网络)的简介、基础知识(神经元/感知机、训练策略、预测原理)、算法分类、经典案例应用之详细攻略

目录


深度学习(神经网络)的简介


1、深度学习浪潮兴起的三大因素


深度学习(神经网络)的基础知识(相关概念、训练策略)


1、神经网络的基础知识


2、神经元的结构


3、感知机


4、万能逼近定理


5、神经网络训练


6、神经网络学习


7、神经网络的前馈运算与反向传播


8、激活函数


深度学习(神经网络)的算法分类


1、常用的神经网络模型概览


深度学习(神经网络)的经典案例应用



深度学习(神经网络)的简介


      深度学习(Deep Learning, DL)或阶层学习(hierarchical learning)是机器学习的技术和研究领域之一,通过建立具有阶层结构的人工神经网络(Artifitial Neural Networks, ANNs),在计算系统中实现人工智能  。由于阶层ANN能够对输入信息进行逐层提取和筛选,因此深度学习具有表征学习(representation learning)能力 ,可以实现端到端的监督学习和非监督学习 。此外,深度学习也可参与构建强化学习(reinforcement learning)系统,形成深度强化学习  。


      深度学习所使用的阶层ANN具有多种形态,其阶层的复杂度被通称为“深度”  。按构筑类型,深度学习的形式包括多层感知器、卷积神经网络、循环神经网络、深度置信网络和其它混合构筑  。深度学习使用数据对其构筑中的参数进行更新以达成训练目标,该过程被通称为“学习”  。学习的常见方法为梯度下降算法及其变体 ,一些统计学习理论被用于学习过程的优化 [9]  。


       在应用方面,深度学习被用于对复杂结构和大样本的高维数据进行学习,按研究领域包括计算机视觉、自然语言处理、生物信息学、自动控制等,且在人像识别、机器翻译、自动驾驶等现实问题中取得了成功。


1、深度学习浪潮兴起的三大因素

海量的数据

不断提升的算法能力

高性能计算硬件的实现:GPU、TPU


深度学习(神经网络)的基础知识(相关概念、训练策略)


      深度学习的实质是构建具有多个隐藏层的机器学习模型,通过海量的训练数据来学习更有用的特征,从而最终提升分类或预测的准确性。“深度模型”是手段,“表示学习”是目的。

      深度学习与传统的浅层学习的不同在于:


(1) 强调了模型结构的深度,有2层以上的隐藏层;

(2) 明确突出了表示学习的重要性。通过逐层特征变换,将样本在原空间的特征表示变换到一个新的特征空间,使分类或预测更加容易。

image.png

DL之DNN优化技术:神经网络算法简介之GD/SGD算法的简介、代码实现、代码调参之详细攻略

DL之DNN:BP类神经网络理解之不需要额外任何文字,只需要八张图讲清楚BP类神经网络的工作原理


1、神经网络的基础知识


神经元

感知机

激活函数:Sigmoid、tanh、ReLU、Leaky ReLU、ELU、Softmax。

多层感知机:

万能逼近定理:


2、神经元的结构


生物神经元包括细胞体和突起两个部分,突起又包括树突(接收信号)和轴突(传出信号)。

轴突记录了神经元间联系的强弱。只有达到一定的兴奋程度,神经元才向外界传输信息。

神经元之间的信号通过突触传递。

image.png


3、感知机

DL之Perceptron:Perceptron感知器(感知机/多层感知机/人工神经元)的简介、原理、案例应用(相关配图)之详细攻略



4、万能逼近定理


(Universal approximation theorem)


只需一个包含单个隐藏层的前馈神经网络,即可逼近任意一个连续函数。

尽管仅有一个隐藏层的前馈网络足以表示任何函数,但是该隐藏层的神经元数目可能非常多,从而导致网络无法学习或正确泛化。


5、神经网络训练


(1)、损失函数:

平均损失函数

绝对值损失函数

交叉熵损失函数:softmax回归,独热编码。


(2)、优化目标


(3)、梯度下降:


梯度下降批次训练策略:

          批次梯度下降(Batch Gradient Descent)、

          随机梯度下降(Stochastic Gradient Descent)、

          小批次梯度下降(Mini-batch Gradient Descent)、

DL之DNN优化技术:神经网络算法简介之梯度下降算法(GD算法)中相关概念(方向导数/梯度)、目标函数、其他常见损失函数求梯度(求导)案例之详细攻略


梯度下降各种优化算法:Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam

(4)、反向传播法:计算图解释


1、神经网络训练的优化目标

image.png







相关文章
|
8天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
132 55
|
8天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
121 73
|
18天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
106 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
17天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
112 30
|
5天前
|
JSON 算法 Java
Nettyの网络聊天室&扩展序列化算法
通过本文的介绍,我们详细讲解了如何使用Netty构建一个简单的网络聊天室,并扩展序列化算法以提高数据传输效率。Netty的高性能和灵活性使其成为实现各种网络应用的理想选择。希望本文能帮助您更好地理解和使用Netty进行网络编程。
25 12
|
12天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
21天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
18天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
24天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。