深度学习500问——Chapter06: 循环神经网络(RNN)(2)

简介: 深度学习500问——Chapter06: 循环神经网络(RNN)(2)

6.4 CNN和RNN的区别

类别 特点描述
相同点

1、传统神经网络的扩展

2、前向计算产生结果,反向计算模型更新

3、每层神经网络横向可以多个神经元共存,纵向可以有多层神经网络连接

不同点

1、CNN空间扩展,神经元与特征卷积;RNN时间扩展,神经元与多个时间输出计算

2、RNN可以用于描述时间上连续状态的输出,有记忆功能,CNN用于静态输出

6.5 RNNs与FNNs有什么区别

1. 不同于传统的前馈神经网络(FNNs),RNNs引入了定向循环,能够处理输入之间前后关联问题。

2. RNNs可以记忆之前步骤的训练信息。

定向循环结构如下图所示:


6.6 RNNs训练和传统ANN训练异同点

相同点:

  • RNNs与传统ANN都使用BP(Back Propagation)误差反向传播算法。

不同点:

  • RNNs网络参数W,U,V是共享的(具体在本章6.2节中已介绍),而传统神经网络各层参数间没有直接联系。
  • 对于RNNs,在使用梯度下降算法中,每一步的输出不仅依赖当前步的网络,还依赖于之前若干步的网络状态。

6.7 为什么RNN训练的时候Loss波动很大

由于RNN特有的memory会影响后期其他的RNN的特点,梯度时大时小,learning rate没法个性化的调整,导致RNN在train的过程中,Loss会震荡起伏,为理论解决RNN的这个问题,在训练的时候,可以设置临界值,当梯度大于某个临界值,直接截断,用这个临界值作为梯度的大小,防止大幅震荡。

6.8 标准RNN前向输出流程

表示输入, 是隐层单元, 是输出, 为损失函数, 为训练集标签。 表示 时刻的状态, 是权值,同一类型的连接权值相同。以下图为例进行说明标准RNN的前向传播算法:

对于 时刻, ,其中 为激活函数,一般会选择tanh函数, 为偏置。

时刻的输出为:

模型的预测输出为:

其中, 为激活函数,通常RNN用于分类,故这里一般用softmax函数。

6.9 BPTT算法推导

BPTT(back-propagation through time)算法是常用的训练RNN的方法,其本质还是BP算法,只不过RNN处理时间序列数据,所以要基于时间反向传播,故叫随时间反向传播。BPTT的中心思想进而BP算法相同,沿着需要优化的参数的负梯度方向不断寻找更优的点直至收敛。

需要寻优的参数有三个,分别是U、V、W。与BP算法不同的是,其中W和U两个参数的寻优过程需要追溯之前的历史数据,参数V相对简单只需关注目前,那么我们就先来求解参数V的偏导数。

RNN的损失也是会随着时间累加的,所以不能只求 时刻的偏导。

W和U的偏导的求解由于需要涉及历史数据,其偏导求起来相当复杂。为了简化推导过程,我们假设只有三个时刻,那么在第三个时刻 的偏导数分别为:

可以观察到,在某个时刻的对 或是 的偏导数,需要追溯这个时刻之前所有时刻的信息。根据上面两个式子得出 时刻对 偏导数的通式:

整体的偏导公式就是将其按时刻再一一加起来。

6.9 RNN中为什么会出现梯度消失

首先来看tanh函数的函数及导数图如下所示:

sigmoid函数的函数及导数图如下所示:

从上图观察可知,sigmoid函数的导数范围是(0,0.25],tanh函数的导数范围是(0,1],它们的导数最大都不大于1。

基于6.8章节中公式的推导,RNN的激活函数是嵌套在里面的,如果选择激活函数为tanh或sigmoid,把激活函数放进去,拿出中间累乘的那部分可得:

梯度消失现象:

基于上式,会发现累乘会导致激活函数导数的累乘,如果取tanh或sigmoid函数作为激活函数的话,那么必然是一堆小数在做乘法,结果就是越乘越小。随着时间序列的不断深入,小数的累乘就会导致梯度越来越小直到接近于0,这就是“梯度消失”现象。

实际使用中,会优先选择tanh函数,原因是tanh函数相对于sigmoid函数来说梯度较大,收敛速度更快且引起梯度消失更慢。

6.10 如何解决RNN中的梯度消失问题

上节描述的梯度消失是在无限的利用历史数据而造成,但是RNN的特点本来就是能利用历史数据获取更多的可利用信息,解决RNN中的梯度消失方法主要有:

  1. 选取更好的激活函数,如ReLU激活函数。ReLU函数的左侧导数为0,右侧导数恒为1,这就避免了“梯度消失”的发生。但恒为1的导数容易导致“梯度爆炸”,但设定合适的阈值可以解决这个问题。
  2. 加入BN层,其优点包括可加速收敛、控制过拟合,可以少用或不用Dropout和正则、降低网络对初始化权重不敏感,且能允许使用较大的学习率等。
  3. 改变传播结构,LSTM结构可以有效解决这个问题。

目录
相关文章
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
4天前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
|
13天前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
27 7
|
14天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习的奥秘:探索神经网络背后的魔法
【10月更文挑战第22天】本文将带你走进深度学习的世界,揭示神经网络背后的神秘面纱。我们将一起探讨深度学习的基本原理,以及如何通过编程实现一个简单的神经网络。无论你是初学者还是有一定基础的学习者,这篇文章都将为你提供有价值的信息和启示。让我们一起踏上这段奇妙的旅程吧!
|
14天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
55 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
15天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
1天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
8 0
|
3天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习的奇迹:如何用神经网络识别图像
【10月更文挑战第33天】在这篇文章中,我们将探索深度学习的奇妙世界,特别是卷积神经网络(CNN)在图像识别中的应用。我们将通过一个简单的代码示例,展示如何使用Python和Keras库构建一个能够识别手写数字的神经网络。这不仅是对深度学习概念的直观介绍,也是对技术实践的一次尝试。让我们一起踏上这段探索之旅,看看数据、模型和代码是如何交织在一起,创造出令人惊叹的结果。
11 0
|
4天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
10天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
下一篇
无影云桌面