深度学习500问——Chapter06: 循环神经网络(RNN)(3)

简介: 深度学习500问——Chapter06: 循环神经网络(RNN)(3)

6.11 LSTM

6.11.1 LSTM的产生原因

RNN在处理长期依赖(时间序列上距离较远的节点)时会遇到巨大的困难,因为计算距离较远的节点之间联系时会涉及雅可比矩阵的多次相乘,会造成梯度消失或者梯度膨胀的现象。为了解决该问题,研究人员提出了许多解决办法,例如ESN(Echo State Network),增加有漏单元(Leaky Units)等等,其中成功应用最广泛的就是门限RNN(Gated RNN),而LSTM就是门限RNN中最著名的一种。有漏单元通过设计连接间的权重系数,从而允许RNN累积距离较远节点间的长期联系;而门限RNN则泛化了这样的思想,允许在不同时刻改变该系数,且允许网络忘记当前已经积累的信息。

6.11.2 图解标准RNN和LSTM的区别

所有RNN都具有一种重复神经网络模块的链式的形式。在标准的RNN中,这个重复的模块只有一个非常简单的结构,例如一个tanh层,如下图所示:

LSTM同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于单一神经网络层,这里有四个,以一种非常特殊的方式进行交互。

注:上图图标具体含义如下所示:

上图中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。粉色的圈代表pointwise的操作,诸如向量的和,而黄色的矩阵就是学习到的神经网络层。合在一起的线表示向量的连接,分开的线表示内容被复制,然后分发到不同的位置。

6.11.3 LSTM核心思想图解

LSTM的关键就是细胞状态,水平线在图上方贯穿运行。细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。示意图如下所示:


LSTM有通过精心设计的称作“”的结构来去除或者增加信息到细胞状态的能力。门是一种让信息选择式通过的方法。他们包含一个sigmoid神经网络层和一个pointwise乘法操作。示意图如下:

LSTM拥有三个门,分别是忘记层门,输入层门和输出层门,来保护和控制细胞状态。

忘记层门

  • 作用对象:细胞状态。
  • 作用:将细胞状态中的信息选择性的遗忘。
  • 操作步骤:该门会读取 ,输出一个在0到1之间的数值给每个在细胞状态 中的数字。1表示“完全保留”,0表示“完全舍弃”。示意图如下:

输入层门

  • 作用对象:细胞状态。
  • 作用:将新的信息选择性的记录到细胞状态中。
  • 操作步骤:

       Step1:sigmoid层称“输入门层”决定什么值我们将要更新。

 Step2:tanh层创建一个新的候选值向量   加入到状态中。其示意图如下:

       Step3:将 更新为 。将旧状态与 相乘。丢弃掉我们确定需要丢弃的信息。接着加上 得到新的候选值,根据我们决定更新每个状态的程度进行变化。其示意图如下:

输出层门

  • 作用对象:隐藏层
  • 作用:确定输出什么值。
  • 操作步骤:

       Step1:通过sigmoid层来确定细胞状态的哪个部分将输出。

      Step2:把细胞状态通过tanh进行处理,并将它和sigmoid门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。

其示意图如下所示:

6.11.4 LSTM流行的变体

增加peephole连接

在正常的LSTM结构中,Gers F A等人提出增加peephole连接,可以门层接受细胞状态的输入。示意图如下所示:

对忘记门和输入门同时确定

不同于之前是分开确定什么忘记和需要添加什么新的信息,这里是一同做出决定。示意图如下所示:

Gated Recurrent Unit(GRU)

由Kyunghyun Cho等人提出的Gated Recurrent Unit(GRU),其将忘记门和输入门合成了一个单一的更新门。同样还混合了细胞状态和隐藏状态,和其他一些改动。其示意图如下所示:

最终模型的比标准的LSTM模型要简单,也是非常流行的变体。

6.12 LSTMs与GRUs的区别

LSTMs与GRUs的区别如图所示:

从上图可以看出,二者结构十分相似,不同在于:

  1. new memory都是根据之前state及input进行计算,但是GRUs中有一个reset gate控制之前的state的进入量,而在LSTMs里没有类似gate;
  2. 产生新的state的方式不同,LSTMs有两个不同的gate,分别是forget gate(f gate)和input gate(i gate),而GRUs只有一种update gate(z gate);
  3. LSTMs对新产生的state可以通过output gate(o gate)进行调节,而GRUs对输出无任何调节。

6.13 RNNs在NLP中的典型应用

1. 语言模型与文本生成(Language Modeling and Generating Text)

给定一组单词序列,需要根据前面单词预测每个单词出现的可能性。语言模型能够评估某个语句正确的可能性,可能性越大,语句越正确。另一种应用便是使用生成模型预测下一个单词的出现概率,从而利用输出概率的采样生成新的文本。

2. 机器翻译(Machine Translation)

机器翻译是将一种源语言语句变成意思相同的另一种源语言语句,如将英语语句变成同样意思的中文语句。与语言模型关键的区别在于,需要将源语言语句序列输入后,才进行输出,即输出第一个单词时,便需要从完整的输入序列中进行获取。

3. 语音识别(Speech Recognition)

语音识别是指给定一段声波的声音信号,预测该声波对应的某种指定源语言语句以及计算该语句的概率值。

4. 图像描述生成(Generating Image Description)同卷积神经网络一样,RNNs已经在对无标图像描述自动生成中得到应用。CNNs与RNNs结合也被应用于图像描述自动生成。

目录
相关文章
|
11天前
|
机器学习/深度学习 自然语言处理 搜索推荐
深度学习的魔法:如何用神经网络解决复杂问题
在这篇文章中,我们将探讨深度学习的基本原理和它在各种领域中的应用。通过一些实际的例子,我们将看到深度学习如何帮助我们解决复杂的问题,如图像识别、自然语言处理和推荐系统等。我们还将讨论一些最新的研究成果和技术趋势,以及深度学习在未来可能面临的挑战和机遇。
|
6天前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
21 7
|
7天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习的奥秘:探索神经网络背后的魔法
【10月更文挑战第22天】本文将带你走进深度学习的世界,揭示神经网络背后的神秘面纱。我们将一起探讨深度学习的基本原理,以及如何通过编程实现一个简单的神经网络。无论你是初学者还是有一定基础的学习者,这篇文章都将为你提供有价值的信息和启示。让我们一起踏上这段奇妙的旅程吧!
|
7天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
20 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
8天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
15天前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
49 1
|
16天前
|
机器学习/深度学习 算法 数据挖掘
【深度学习】经典的深度学习模型-02 ImageNet夺冠之作: 神经网络AlexNet
【深度学习】经典的深度学习模型-02 ImageNet夺冠之作: 神经网络AlexNet
24 2
|
3天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
|
5天前
|
机器学习/深度学习 算法 计算机视觉
深度学习与生活:如何利用卷积神经网络识别日常物品
【10月更文挑战第24天】在这篇文章中,我们将探索深度学习如何从理论走向实践,特别是卷积神经网络(CNN)在图像识别中的应用。通过一个简单的示例,我们将了解如何使用CNN来识别日常生活中的物体,如水果和家具。这不仅是对深度学习概念的一次直观体验,也是对技术如何融入日常生活的一次深刻反思。文章将引导读者思考技术背后的哲理,以及它如何影响我们的生活和思维方式。
|
11天前
|
机器学习/深度学习 人工智能 自动驾驶
深入理解深度学习中的卷积神经网络(CNN)
【10月更文挑战第18天】深入理解深度学习中的卷积神经网络(CNN)
23 0