带你读《弹性计算—无处不在的算力》第三章:计算产品和技术3.4 异构计算云服务和AI 加速器(一)

简介: 《弹性计算—无处不在的算力》第三章:计算产品和技术3.4 异构计算云服务和AI 加速器(一)


异构计算指由不同类型指令集和体系架构的计算单元组成系统的计算方式,目前主要包括GPUFPGA 和定制ASIC 等。它们好比天赋异禀的独门高手,在特定场景下比普通的云服务器高出一个甚至更多数量级的性价比和效率,例如,在图形图像处理、机器学习、科学计算等场景下。要把这些异构计算设备包装成云服务器,同样需要对它们进行虚拟化。而由于这些设备的特殊性,其虚拟化技术或多或少地有别 于CPU


随着人工智能浪潮的兴起,越来越多的AI 计算都采用异构计算来实现性能加速。异构计算能够为越来越复杂和精确的AI 的计算模型带来大幅性能提升,现在, AI 开发者大部分都采用了TensorFlowPyTorch 等主流的AI 计算框架来实现异构计算的性能加速。但是,这些主流的AI 框架不能充分发挥异构计算超强的计算能力, 因此我们针对异构计算云服务研发了云端 AI 加速器,通过统一的框架同时支持了


TensorFlowPyTorchMXNetCaffe 4 种主流AI 计算框架的性能加速,并且针对以太网和异构加速器本身进行了深入的性能优化。


3.4.1 功能特点

异构计算GPU

视觉、图形、虚拟现实、大数据和人工智能等新兴技术的发展和广泛应用对计算能力提出了更高的要求。传统计算机的计算主要是由计算机的中央处理器(CPU)完成的,CPU 除了必要的计算工作,还需要负责处理复杂的控制逻辑, 这就导致 CPU 的内部架构异常复杂,真正用于计算的部分占比并不高。随着芯片技术的发展,CPU 晶体管的数量不断增加,但是 CPU 的计算能力没办法得到质的提升。使用 CPU 对上述领域的数据进行处理,在经济性和实效性方面都无法满足实际应用的要求。异构计算因此而产生。


异构计算是相对于 CPU 的通用计算而言的,通过在现有 CPU 基础上引入新的硬件计算单元来解决上述问题。这些新的硬件单元针对特定的计算场景进行深度的优化和定制,在处理这一类计算任务时可以获得相比 CPU 几十倍甚至上百倍的效率提升。目前主流的异构计算解决方案有GPUFPGA,在阿里云弹性计算的产品序列上, 它们分别对应GPU 云服务、FPGA 云服务和弹性加速实例服务(Elastic Acceleration Instance ServiceEAIS)。


GPU 云服务器是基于GPU 应用的计算服务器。在GPU 硬件支持虚拟化之前, 已经在各个领域被广泛应用。GPU 在执行复杂的数学和几何计算方面有着独特的优势。特别是在浮点运算、并行计算等方面,GPU 可以提供上百倍于CPU 的计算能力。GPU 云服务器让GPU 的使用更便捷、成本更低,GPU 上云是大势所趋。GPU 云服务器发布和人工智能爆发在同一年,两者相互促进。GPU 云服务器已经成为人工智能应用依赖的基础设施。


CPU 相比,GPU 硬件的使用需要复杂的生态软件支持,环境的构建较为复杂, 以NVIDIA GPU 硬件为例,底层安装的GPU 硬件驱动,并行计算需要CUDAcuDNN 等基础库支持,上层应用还需要设置各种的环境变量,使用比较复杂。GPU 云服务器是虚拟化云服务器的一个规格族,具有虚拟化服务器的一切特性:在环境复用性上利用自定义镜像等功能,可以很便捷地规模化使用;支持停机迁移,GPU 或宿主机出现故障时,可以通过冷迁移,在几分钟内恢复起来。当前GPU 分片虚拟化技术已经成熟,各云服务提供商已经试水上线对应的规格,和GPU 直通相比,具容器服务对GPU 的支持已经非常成熟,GPU 硬件厂商对Docker 做了定制化的开发,在容器内可以获得GPU 全部功能,使用更加便捷。GPU 云服务器作为弹性的资源,在之上部署容器服务,从而实现弹性业务,这种架构方案已经被主流AI 公司广泛使用。


异构计算FPGA

FPGA 自诞生之初,就以高度灵活的可编程性提供类ASIC 的性能和能效比而被广泛应用于有线和无线通信、航空航天、医疗电子和汽车电子等领域。但是,相比CPU GPUFPGA 的开发周期较长(尽管只有ASIC 开发周期的一半乃至三分之一)、开发和使用门槛较高,使得FPGA 的开发人员远远少于CPU GPU 的开发人员,同时应用范围和知名度也受到了很大的限制。


随着云计算的蓬勃发展,各种新的数据中心应用层出不穷,对算力(比如AI) 和计算结果实时性(比如基因测序和视频直播)提出了越来越高的要求。而CPU 的算力随着摩尔定律的终结,短时间内很难有大的提升,业界也逐渐尝到了采用FPGA 进行特定workload 加速的巨大优势。因此,在数据中心大力推广FPGA 异构加速逐渐成为业界共识。与之相对应,AWS 和阿里云在2017 4 月先后发布了基于FPGA 的云上应用,也即FPGA as a Service。其目的是提供超高性价比、超低延时(相比CPU 或者GPU,下同)的云上FPGA 服务。微软也通过Catapult 项目,在自家的数据中心大量部署FPGA,支持Bing Office 365 业务,更于2019 10 月北美XDF 大会上推出了自家的FPGA as a Service 产品,进一步佐证了FPGA 异构加速在数据中心应用的光明前景。


一般来说,云上FPGA 服务应具备如下功能和特点。

一是易用性,包括购买和使用要达到类ECS(基于CPU 的计算服务)的方便快捷性;具备类ECS 的灵活调度性,随用随开、不用释放。

二是稳定性,要具备类ECS 的热升级、热迁移功能。

三是安全性,包括客户和第三方ISV IP 地址要被合理合法使用;能够防范各种针对FPGA 的恶意攻击及受到攻击后迅速恢复。

四是要提供FPGA 云上开发和使用的工具及环境,让用户和线下一样方便地开发各种FPGA 加速器并在云上部署。

弹性加速实例服务

弹性加速实例服务(EAIS)支持异构计算资源的弹性挂载,前端可以使用不带异构加速的ECS 实例,后端可以动态挂载或者卸载GPUFPGANPU 等实例,让普通ECS 具备异构计算加速的能力。EAIS 可以让CPU 和异构加速器的数量配比实现灵活可配置,从而满足AI 推理、渲染、视频编解码全场景对于不同CPU 和异构加速器的数量配比的需求。同时,后端的GPUFPGANPU 等实例通过池化管理和调度,可以灵活选择最适合用户工作负载的异构加速器,大大降低异构加速成本。


AI 加速器

AI 加速器通过统一的框架同时支持TensorFlowPyTorchMXNetCaffe 4 种主流的人工智能计算框架的分布式性能加速,并且针对以太网和异构加速器都做了很深入的性能优化,在不同场景不同训练规模下可以提升1 10 倍的训练性能。同时,AI 加速器和各AI 计算框架是解耦的,一方面可以轻松支持各AI 计算框架社区版本的向前迭代;另一方面,用户使用各AI 计算框架实现的模型、算法代码基本上不用修改,就可以很轻松的获得性能加速。


相关实践学习
2分钟自动化部署人生模拟器
本场景将带你借助云效流水线Flow实现人生模拟器小游戏的自动化部署
7天玩转云服务器
云服务器ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,可降低 IT 成本,提升运维效率。本课程手把手带你了解ECS、掌握基本操作、动手实操快照管理、镜像管理等。了解产品详情: https://www.aliyun.com/product/ecs
相关文章
|
6天前
|
人工智能 前端开发 小程序
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
|
10天前
|
人工智能 Serverless API
《智能导购 AI 助手构建》解决方案评测:极具吸引力的产品,亟待完善的教程文档
《智能导购 AI 助手构建》解决方案评测:极具吸引力的产品,亟待完善的教程文档
74 8
《智能导购 AI 助手构建》解决方案评测:极具吸引力的产品,亟待完善的教程文档
|
24天前
|
人工智能 缓存 并行计算
转载:【AI系统】CPU 计算本质
本文深入探讨了CPU计算性能,分析了算力敏感度及技术趋势对CPU性能的影响。文章通过具体数据和实例,讲解了CPU算力的计算方法、算力与数据加载之间的平衡,以及如何通过算力敏感度分析优化计算系统性能。同时,文章还考察了服务器、GPU和超级计算机等平台的性能发展,揭示了这些变化如何塑造我们对CPU性能的理解和期待。
转载:【AI系统】CPU 计算本质
|
24天前
|
机器学习/深度学习 存储 人工智能
转载:【AI系统】计算之比特位宽
本文详细介绍了深度学习中模型量化操作及其重要性,重点探讨了比特位宽的概念,包括整数和浮点数的表示方法。文章还分析了不同数据类型(如FP32、FP16、BF16、FP8等)在AI模型中的应用,特别是FP8数据类型在提升计算性能和降低内存占用方面的优势。最后,文章讨论了降低比特位宽对AI芯片性能的影响,强调了在不同应用场景中选择合适数据类型的重要性。
转载:【AI系统】计算之比特位宽
|
3天前
|
存储 人工智能 运维
面向AI的服务器计算软硬件架构实践和创新
阿里云在新一代通用计算服务器设计中,针对处理器核心数迅速增长(2024年超100核)、超多核心带来的业务和硬件挑战、网络IO与CPU性能增速不匹配、服务器物理机型复杂等问题,推出了磐久F系列通用计算服务器。该系列服务器采用单路设计减少爆炸半径,优化散热支持600瓦TDP,并实现CIPU节点比例灵活配比及部件模块化可插拔设计,提升运维效率和客户响应速度。此外,还介绍了面向AI的服务器架构挑战与软硬件结合创新,包括内存墙问题、板级工程能力挑战以及AI Infra 2.0服务器的开放架构特点。最后,探讨了大模型高效推理中的显存优化和量化压缩技术,旨在降低部署成本并提高系统效率。
|
3天前
|
存储 人工智能 芯片
面向AI的服务器计算互连的创新探索
面向AI的服务器计算互连创新探索主要涵盖三个方向:Scale UP互连、AI高性能网卡及CIPU技术。Scale UP互连通过ALink系统实现极致性能,支持大规模模型训练,满足智算集群需求。AI高性能网卡针对大规模GPU通信和存储挑战,自研EIC网卡提供400G带宽和RDMA卸载加速,优化网络传输。CIPU作为云基础设施核心,支持虚拟化、存储与网络资源池化,提升资源利用率和稳定性,未来将扩展至2*800G带宽,全面覆盖阿里云业务需求。这些技术共同推动了AI计算的高效互联与性能突破。
|
3天前
|
人工智能 运维 监控
阿里云Milvus产品发布:AI时代云原生专业向量检索引擎
随着大模型和生成式AI的兴起,非结构化数据市场迅速增长,预计2027年占比将达到86.8%。Milvus作为开源向量检索引擎,具备极速检索、云原生弹性及社区支持等优势,成为全球最受欢迎的向量数据库之一。阿里云推出的全托管Milvus产品,优化性能3-10倍,提供企业级功能如Serverless服务、分钟级开通、高可用性和成本降低30%,助力企业在电商、广告推荐、自动驾驶等场景下加速AI应用构建,显著提升业务价值和稳定性。
|
27天前
|
机器学习/深度学习 人工智能 前端开发
【AI系统】计算图的控制流实现
计算图作为有向无环图(DAG),能够抽象神经网络模型,但在编程中遇到控制流语句(如if、else、while、for)时,如何表示成为难题。引入控制流后,开发者可构建更复杂的模型结构,但部署含控制流的模型至不支持Python的设备上较为困难。目前,PyTorch仅支持Python控制流,而TensorFlow通过引入控制流原语来解决此问题。计算图的动态与静态实现各有优劣,动态图易于调试,静态图利于优化。
44 5
【AI系统】计算图的控制流实现
|
27天前
|
机器学习/深度学习 人工智能 算法
【AI系统】计算图挑战与未来
当前主流AI框架采用计算图抽象神经网络计算,以张量和算子为核心元素,有效表达模型计算逻辑。计算图不仅简化数据流动,支持内存优化和算子调度,还促进了自动微分功能的实现,区分静态图和动态图两种形式。未来,计算图将在图神经网络、大数据融合、推理部署及科学计算等领域持续演进,适应更复杂的计算需求。
56 5
【AI系统】计算图挑战与未来
|
10天前
|
存储 机器学习/深度学习 人工智能
科技云报到:人工智能时代“三大件”:生成式AI、数据、云服务
科技云报到:人工智能时代“三大件”:生成式AI、数据、云服务