简析机器学习和深度学习之间的区别-阿里云开发者社区

开发者社区> 机器智能技术> 正文
登录阅读全文

简析机器学习和深度学习之间的区别

简介: 人工智能技术中常见的两个概念“机器学习”和“深度学习”,如何理解两者间的区别非常重要,本文将对此做简要的解析。

image.png

随着人工智能浪潮席卷现代社会,不少人对于机器学习、深度学习、计算机视觉、自然语言处理等名词已经耳熟能详。可以预见的是,在未来的几年里,无论是在业界还是学界,拥有深度学习和机器学习能力的企业都将扮演重要角色。

假设你对人工智能领域的基础知识比较感兴趣,你就会发现很多人工智能技术中常见的两个概念:机器学习和深度学习。如何理解两者间的区别非常重要,本文将对此做简要的解析。

深度学习:一种实现机器学习的技术

所谓深度学习,简单来说是机器学习的一个子集,用于建立、模拟人脑进行数据处理和分析学习的神经网络,因此也可以被称作是深度神经网络。其基本特点是模仿大脑的神经元之间传递和处理信息的模式。

深度学习的优势在于:

  • 不需要手动设计特征,其自动学习的功能对于当前的任务来说最佳;
  • 任务自动获得对抗数据自然变化的鲁棒性;
  • 很强的泛化性,相同的深度学习方法可以用于不同的应用程序和不同的数据类型;
  • 使用多GPU可以执行巨大的并行计算。当数据量很大时,会产生更好的输出结果;
  • 其体系结构有可扩展性,具备适应新问题的潜能。

机器学习:一种实现人工智能的方法

所谓机器学习,通俗来说是一种实现人工智能的方法,它赋予系统从经验中自动学习和发展的能力。与传统的为解决特定任务、硬编码的软件程序不同,研究人员会用大量的数据和各种算法来“训练”机器,让机器学习如何执行并完成任务。

机器学习的优势在于:

  • 解决垃圾邮件检测的问题;
  • 在制造领域优化设备功能,改善生产效率;
  • 简化营销手段,协助预测销售量;
  • 提升预测性维护功能;
  • 提高安全性和网络性能

未来的可能性

许多企业利用机器学习和深度学习从大量数据中获取洞见,实现智能自动化、商业智能、优化运营,达成最小化问题和最大化利润。通常来说,深度学习从大量的非结构化数据(文本、视频、图像、传感器数据)中获取知识,用于解决更复杂的任务。它驱动了计算机视觉、语音解读、自然语言处理等领域机器学习方法的发展。如果您的组织正持续不断地生成海量数据流,那么使用深度学习就非常值得考虑。

迄今而至,深度学习和机器学习都已经发展了一段时间。为了创造更多的收入,不少行业开始采用深度学习和机器学习算法,同时培训员工学习这种能力,为企业做出贡献。很多公司正在推出创新的深度学习技术,以解决复杂的挑战。未来,人工智能的边界仍将随着人类想象力和技术的延展迎来更多的可能。


原文:UNDERSTANDING DEEP LEARNING VS MACHINE LEARNING
本文转自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
在线免费体验百种AI能力:【点此跳转】
机器智能技术结尾二维码.png

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
机器智能技术
使用钉钉扫一扫加入圈子
+ 订阅

阿里云机器智能研究领域主要围绕机器学习等前沿技术开展理论与应用研究。《机器智能技术》圈子基于阿里巴巴达摩院的技术沉淀,围绕【研究报告】、【前沿技术】、【应用案例】、【行业新闻】、【传奇人物】多个方向为广大开发者贡献干货内容。

官方博客