【云栖号案例 | 互联网】小打卡:基于 MaxCompute+PAI 的推荐算法实践

本文涉及的产品
交互式建模 PAI-DSW,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 小打卡是国内最大的兴趣社群平台,每天能够产生上百万条新的内容。依托于阿里云MaxCompute,小打卡已经完成了TB级数据仓库方案。在此基础之上,结合机器学习PAI,实现了千人千面的推荐算法。

云栖号案例库:【点击查看更多上云案例】
不知道怎么上云?看云栖号案例库,了解不同行业不同发展阶段的上云方案,助力你上云决策!

案例背景

小打卡是国内最大的兴趣社群平台,每天能够产生上百万条新的内容。在这样超大的内容生产背景下,平台也面临着千人千面、内容分发上的巨大挑战。依托于阿里云MaxCompute,小打卡已经完成了TB级数据仓库方案。在此基础之上,结合机器学习PAI,实现了千人千面的推荐算法。本文将从技术选型、推荐架构、开源算法结合三个方面,讲述小打卡在MaxCompute上的一些实战经验。

为什么选择MaxCompute

MaxCompute是阿里云完全自研的一种快速、完全托管的TB/PB级的数据仓库解决方案,并且上层提供了DataWorks以实现工作流可视化开发、调度运维托管的一站式海量数据离线加工分析平台。除此之外,MaxCompute还与阿里云服务的多个产品集成,比如:

  • 数据集成
    完成MaxCompute与各种数据源的相互同步
  • 机器学习PAI
    实现直接基于MaxCompute完成数据处理、模型训练、服务部署的一站式机器学习
  • QuickBI
    对MaxCompute表数据进行报表制作,实现数据可视化分析
  • 表格存储
    阿里云自研的分布式NoSQL数据存储服务,MaxCompute离线计算的机器学习特征可以很方便的写入,以供在线模型使用。

相反,如果完全基于开源的Hadoop框架,从服务部署、可视化开发、代码管理、任务调度、集群运维等多方面,均需要大量的人力来开发与维护。基于MaxCompute,不论是人力成本,还是计算成本,还是运维成本,都已经降到了最低。

小打卡推荐系统架构

小打卡的整个技术架构完全基于阿里云实现。埋点日志、业务数据分别由日志服务、RDS/DRDS承担收集和存储任务,通过数据集成同步到MaxCompute,之后便可基于PAI实现机器学习任务。其物理结构如下图所示。

image

机器学习PAI-Studio提供了数据预处理、特征工程、机器学习、深度学习、文本分析等丰富的机器学习组件,并且计算结果直接以宽表的形式存储于MaxCompute,极大的减轻了算法开发的工作量。

我们基于PAI,实现了GBDT+LR算法,任务流如下图所示:

image

图中采用了丰富的PAI机器学习组件,主要包括6个部分:1-特征加工,2-训练模型,3-验证模型,4-测试模型,5-特征映射关系,6-特征重要性。开发完成后,可以加载到DataWorks中进行调度,运行完成会生成GBDT模型文件(pmml格式)、LR模型文件(pmml格式)、特征映射表,以便线上使用。由于我们后端主服务均在华北1,而PAI的模型在线部署在华东2,存在着公网访问问题,因此我们暂时无法使用PAI的模型在线部署功能,建议大家将两部分放在同一地域。鉴于此问题,幸好PAI的同学提供了将pmml模型文件写入oss的脚本,相关代码如下:

  • pmml模型写入oss

pai -name modeltransfer2oss

-DmodelName=xlab_m_GBDT_LR_1_1806763_v0
-DossPath="oss://test.oss-cn-shanghai-internal.aliyuncs.com/model/"
-Darn="acs:ram::123456789:role/aliyunodpspaidefaultrole"
-Doverwrite=true
-Dformat=pmml;

因此我们可以将pmml文件写入oss,然后后端服务读取pmml模型文件,自行创建模型在线预测。对于解析pmml模型文件,虽然有开源项目支持pmml模型加载,但是由于pmml过于通用,导致性能存在问题,因此我们定制化自解析模型。

如何结合开源算法

遗憾的是,PAI提供的机器学习算法仍然有限,如果想要使用开源项目来实现算法部分怎么办呢?我们对此也做了尝试,我们则结合MaxCompute+PAI+xLearn实现了基于FM算法的CTR预估模型。
由于xLearn需要在单独的一台ECS上执行,那么问题就来了:

1.如何从MaxCompute拉取数据,又如何上传结果?

MaxCompute提供了pyodps,可以很方便的使用python读写MaxCompute的离线表。因此,我们在python循环检测PAI任务的特征工程结果表是否生成完成。生成完成,则启动下载数据和算法训练任务。算法执行结束后,则将模型文件通过pyodps写入MaxCompute,当然也可以使用tunnel工具来完成。

2.如何周期性调度?DataWorks上的任务与ECS上的任务,如何形成依赖关系?

对于拉取,我们通过循环实现了python与MaxCompute表的依赖关系,那么算法训练完成了,DataWorks的下游怎么知道呢?幸好,DataWorks提供了do-while控制流组件,我们可以在while条件中检测模型表相应分区的数据是否存在了,在 do 组件中,则采用shell执行sleep。跳出while后,则下游也开始正常执行了。之后便可以将模型和映射文件同步写入到oss,以供后端使用了。其中 do-while 结构如下:

image

总结

除了排序算法之外,我们还使用PAI和SQL,分别实现了item_cf和user_cf的召回算法,整个推荐系统完全打通。基于MaxCompute利用DataWorks调度系统,我们实现了推荐算法模型的每日自动更新。相比于模型不更新,我们对比了60天前的模型,新的模型效果提升10%左右。

云栖号案例库:【点击查看更多上云案例】
不知道怎么上云?看云栖号案例库,了解不同行业不同发展阶段的上云方案,助力你上云决策!

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
一站式大数据开发治理平台DataWorks初级课程
DataWorks 从 2009 年开始,十ー年里一直支持阿里巴巴集团内部数据中台的建设,2019 年双 11 稳定支撑每日千万级的任务调度。每天阿里巴巴内部有数万名数据和算法工程师正在使用DataWorks,承了阿里巴巴 99%的据业务构建。本课程主要介绍了阿里巴巴大数据技术发展历程与 DataWorks 几大模块的基本能力。 课程目标  通过讲师的详细讲解与实际演示,学员可以一边学习一边进行实际操作,可以深入了解DataWorks各大模块的使用方式和具体功能,让学员对DataWorks数据集成、开发、分析、运维、安全、治理等方面有深刻的了解,加深对阿里云大数据产品体系的理解与认识。 适合人群  企业数据仓库开发人员  大数据平台开发人员  数据分析师  大数据运维人员  对于大数据平台、数据中台产品感兴趣的开发者
相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
利用机器学习预测股市趋势:一个实战案例
【9月更文挑战第5天】在这篇文章中,我们将探索如何使用机器学习技术来预测股市趋势。我们将通过一个简单的Python代码示例来演示如何实现这一目标。请注意,这只是一个入门级的示例,实际应用中可能需要更复杂的模型和更多的数据。
|
8天前
|
数据采集 算法 物联网
【算法精讲系列】阿里云百炼SFT微调实践分享
本内容为您提供了百炼平台SFT微调的实践案例,帮助您方便并快速借助模型微调定制化您自己的专属模型。
|
24天前
|
机器学习/深度学习 人工智能 数据处理
【人工智能】项目实践与案例分析:利用机器学习探测外太空中的系外行星
探测外太空中的系外行星是天文学和天体物理学的重要研究领域。随着望远镜观测技术的进步和大数据的积累,科学家们已经能够观测到大量恒星的光度变化,并尝试从中识别出由行星凌日(行星经过恒星前方时遮挡部分光线)引起的微小亮度变化。然而,由于数据量巨大且信号微弱,传统方法难以高效准确地识别所有行星信号。因此,本项目旨在利用机器学习技术,特别是深度学习,从海量的天文观测数据中自动识别和分类系外行星的信号。这要求设计一套高效的数据处理流程、构建适合的机器学习模型,并实现自动化的预测和验证系统。
28 1
【人工智能】项目实践与案例分析:利用机器学习探测外太空中的系外行星
|
19天前
|
DataWorks 算法 调度
B端算法实践问题之配置脚本以支持blink批处理作业的调度如何解决
B端算法实践问题之配置脚本以支持blink批处理作业的调度如何解决
25 1
|
19天前
|
SQL 算法 Serverless
B端算法实践问题之使用concat_id算子获取用户最近点击的50个商品ID如何解决
B端算法实践问题之使用concat_id算子获取用户最近点击的50个商品ID如何解决
12 1
|
19天前
|
存储 SQL 消息中间件
B端算法实践问题之设计一套实时平台能力如何解决
B端算法实践问题之设计一套实时平台能力如何解决
25 1
|
19天前
|
存储 SQL 算法
B端算法实践问题之Blink在实时业务场景下的优势如何解决
B端算法实践问题之Blink在实时业务场景下的优势如何解决
25 1
|
19天前
|
SQL 算法 数据处理
B端算法实践问题之物料数据加载的挑战如何解决
B端算法实践问题之物料数据加载的挑战如何解决
28 1
|
23天前
|
机器学习/深度学习 人工智能 算法
【人工智能】传统语音识别算法概述,应用场景,项目实践及案例分析,附带代码示例
传统语音识别算法是将语音信号转化为文本形式的技术,它主要基于模式识别理论和数学统计学方法。以下是传统语音识别算法的基本概述
38 2
|
13天前
|
机器学习/深度学习 存储 分布式计算
Hadoop与机器学习的融合:案例研究
【8月更文第28天】随着大数据技术的发展,Hadoop已经成为处理大规模数据集的重要工具。同时,机器学习作为一种数据分析方法,在各个领域都有着广泛的应用。本文将介绍如何利用Hadoop处理大规模数据集,并结合机器学习算法来挖掘有价值的信息。我们将通过一个具体的案例研究——基于用户行为数据预测用户留存率——来展开讨论。
57 0

热门文章

最新文章

下一篇
DDNS