Python数据科学|第一章:数据科学家的武器库

简介: 本系列教程为《Python数据科学——技术详解与商业实践》的读书笔记。该书以Python为实现工具,以商业实战为导向,从技术、业务、商业实战3个维度来展开学习。
img_7b6f2e219c8bcc30087c1b8a0a21a913.png

本系列教程为《Python数据科学——技术详解与商业实践》的读书笔记。该书以Python为实现工具,以商业实战为导向,从技术、业务、商业实战3个维度来展开学习。本书共19章(Python环境安装和Python基础语法法本系列教程不做讲解),内容较多,旨在学习和记录。但惶恐自身能力有限,未及原书三分,故征得原书作者同意,才敢动笔。

1.1 数据科学的基本概念

数据科学并不是一门学科,它是为了完成商业或工业上的目标,从数据获取知识,为行动提出建议的方法、技术和流程的最佳实践。
本书提供了数据科学工作者的工作范式图,这里将这个工作范式图简单进行描述:数据通过维度分析转换为信息;信息通过建模分析得到知识;知识结合业务目标以此进行决策和行动。
与数据科学相关的知识设计多个学科和领域,包括统计学、数据挖掘、模式识别、机器学习(人工智能)、数据库等。

1.2 数理统计技术

1.2.1 描述性统计分析

新闻报道中的居民收入情况,并不需要把每个人的收入都念一遍,而是取的均值。描述性统计分析就是从总体数据中提取变量的统计量。在日常的业务分析报告中,常使用该方法完成。在实际中,也就是通过Python进行数据统计,完成统计表和统计图的呈现即可。

1.2.2 统计推断与统计建模

统计推断及统计建模,含义是建议解释变量与被解释变量之间可解释的、稳定的,最好是具有因果关系的表达式(下文会详细介绍)。

1.3 数据挖掘技术和方法

数据挖掘的方法分为描述性和预测性。预测性模型从历史数据中找到规律,并用于预测未来;描述性模型用于直观反映历史状况,为后续的分析提供灵感。
例如:判断客户是否违约,可通过客户的性别、年龄、收入、历史信用状况等因素进行预测。这里就是预测性模型。
通过客户标签对用户细分,以便针对不同客户做不同运营;根据客户的产品购买,发现产品间的相关性,用于捆绑营销。这些就是属于描述性模型。

1.3.1 描述性数据挖掘算法
  • 聚类分析
  • 关联规则分析
1.3.2 预测性数据挖掘算法
  • 决策树
  • KNN算法
  • Logistic回归
  • 神经网络
  • 支持向量机
  • 集成算法
    具体的算法在后文中一一讲解。

总结

第一章主要是起到总的作用,首先介绍了数据科学的概念和流程。接下来针对问题的难易,将数据科学需要用到的技术划分为:数理统计技术和数据挖掘技术。这些技术也就是数据科学家的武器库。

相关文章
|
1月前
|
存储 人工智能 测试技术
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
本文介绍如何使用LangChain结合DeepSeek实现多轮对话,测开人员可借此自动生成测试用例,提升自动化测试效率。
336 125
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
|
1月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
122 0
|
6月前
|
JavaScript 前端开发 Java
通义灵码 Rules 库合集来了,覆盖Java、TypeScript、Python、Go、JavaScript 等
通义灵码新上的外挂 Project Rules 获得了开发者的一致好评:最小成本适配我的开发风格、相当把团队经验沉淀下来,是个很好功能……
1249 103
|
3月前
|
存储 Web App开发 前端开发
Python + Requests库爬取动态Ajax分页数据
Python + Requests库爬取动态Ajax分页数据
|
19天前
|
数据可视化 关系型数据库 MySQL
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
本文详解基于Python的电影TOP250数据可视化大屏开发全流程,涵盖爬虫、数据存储、分析及可视化。使用requests+BeautifulSoup爬取数据,pandas存入MySQL,pyecharts实现柱状图、饼图、词云图、散点图等多种图表,并通过Page组件拖拽布局组合成大屏,支持多种主题切换,附完整源码与视频讲解。
111 4
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
|
28天前
|
传感器 运维 前端开发
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
224 10
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
|
2月前
|
运维 Linux 开发者
Linux系统中使用Python的ping3库进行网络连通性测试
以上步骤展示了如何利用 Python 的 `ping3` 库来检测网络连通性,并且提供了基本错误处理方法以确保程序能够优雅地处理各种意外情形。通过简洁明快、易读易懂、实操性强等特点使得该方法非常适合开发者或系统管理员快速集成至自动化工具链之内进行日常运维任务之需求满足。
161 18
|
3月前
|
JSON 网络安全 数据格式
Python网络请求库requests使用详述
总结来说,`requests`库非常适用于需要快速、简易、可靠进行HTTP请求的应用场景,它的简洁性让开发者避免繁琐的网络代码而专注于交互逻辑本身。通过上述方式,你可以利用 `requests`处理大部分常见的HTTP请求需求。
351 51
|
2月前
|
机器学习/深度学习 API 异构计算
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
JAX是Google开发的高性能数值计算库,旨在解决NumPy在现代计算需求下的局限性。它不仅兼容NumPy的API,还引入了自动微分、GPU/TPU加速和即时编译(JIT)等关键功能,显著提升了计算效率。JAX适用于机器学习、科学模拟等需要大规模计算和梯度优化的场景,为Python在高性能计算领域开辟了新路径。
247 0
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
|
2月前
|
数据采集 存储 Web App开发
Python爬虫库性能与选型实战指南:从需求到落地的全链路解析
本文深入解析Python爬虫库的性能与选型策略,涵盖需求分析、技术评估与实战案例,助你构建高效稳定的数据采集系统。
297 0

推荐镜像

更多