在Python中,`functools`模块提供了一个非常有用的装饰器`lru_cache()`,它实现了最近最少使用(Least Recently Used, LRU)缓存策略。

本文涉及的产品
Serverless 应用引擎 SAE,800核*时 1600GiB*时
可观测可视化 Grafana 版,10个用户账号 1个月
可观测链路 OpenTelemetry 版,每月50GB免费额度
简介: 在Python中,`functools`模块提供了一个非常有用的装饰器`lru_cache()`,它实现了最近最少使用(Least Recently Used, LRU)缓存策略。

在Python中,functools模块提供了一个非常有用的装饰器lru_cache(),它实现了最近最少使用(Least Recently Used, LRU)缓存策略。当函数被调用时,其结果会被缓存起来,以便在后续相同的函数调用时直接返回缓存的结果,而不是重新计算。这可以显著提高性能,特别是当函数计算成本较高或函数调用非常频繁时。

技术名称

  1. 装饰器(Decorators):Python中的装饰器是一种高级功能,允许你在不修改函数或方法源代码的情况下,给它们添加额外的功能。
  2. LRU缓存(LRU Cache):最近最少使用缓存策略,它淘汰最长时间未被使用的数据。

Python代码示例

下面是一个使用functools.lru_cache()的示例:

import functools
import time

@functools.lru_cache(maxsize=128)  # 缓存最多128个结果
def fibonacci(n):
    """计算斐波那契数列的第n项"""
    if n < 2:
        return n
    return fibonacci(n-1) + fibonacci(n-2)

# 第一次调用,计算fibonacci(10),并将结果缓存
start_time = time.time()
print(fibonacci(10))  # 输出斐波那契数列的第10项
print(f"计算时间: {time.time() - start_time:.6f}秒")

# 第二次调用,直接从缓存中获取fibonacci(10)的结果,不进行计算
start_time = time.time()
print(fibonacci(10))  # 再次输出斐波那契数列的第10项
print(f"缓存获取时间: {time.time() - start_time:.6f}秒")

# 清除缓存(可选)
fibonacci.cache_clear()

# 你可以通过fibonacci.cache_info()查看缓存的详细信息
print(fibonacci.cache_info())

注意:由于斐波那契数列的计算是递归的,并且对于较大的n值,计算成本会非常高。使用lru_cache()可以显著提高性能,因为它避免了重复计算相同的结果。在上面的示例中,你可以看到第二次调用fibonacci(10)时几乎不花费时间,因为结果直接从缓存中获取。

相关文章
|
1天前
|
设计模式 缓存 开发者
Python中的装饰器:简化代码,提高可读性
【9月更文挑战第10天】在Python编程的世界中,装饰器是一种强大的工具,它允许开发者在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和生动的例子,带你了解装饰器的概念、使用方法及其在实际开发中的应用价值。我们将一起探索如何利用装饰器来简化代码结构,提升代码的可读性和可维护性,让你的编程之旅更加顺畅。
|
7天前
|
Python
探索Python中的装饰器:简化代码,增强功能
【9月更文挑战第3天】在Python的世界里,装饰器是那些静悄悄站在角落、却能大大改变游戏规则的神奇工具。它们就像是给你的函数穿上一件隐形的超级英雄斗篷,让函数拥有了超乎寻常的能力。本文将带领你一探究竟,看看如何通过几行简单的代码,就能让你的函数变得更加智能和强大。
|
1天前
|
开发者 Python
探索Python中的装饰器:从基础到高级应用
【9月更文挑战第10天】在Python的世界中,装饰器是一种强大的工具,它允许开发者在不修改原函数代码的情况下增加新的功能。本文将通过实际代码示例,带你从理解装饰器的基本概念入手,逐步深入到装饰器的高级应用,包括带参数的装饰器、装饰器嵌套以及使用functools模块优化装饰器性能等内容。无论你是初学者还是有一定经验的开发者,这篇文章都能为你提供价值。
|
2天前
|
开发者 Python
探索Python中的装饰器:从入门到实践
【8月更文挑战第41天】本文通过深入浅出的方式,引导读者理解Python装饰器的概念、原理及应用。我们将从装饰器的定义出发,逐步深入其背后的工作原理,并通过实际代码示例,展示如何自定义装饰器以及装饰器的高级用法。文章旨在帮助初学者快速掌握装饰器的使用,同时为有一定基础的开发者提供进阶知识。
|
2天前
|
开发者 Python
Python中的装饰器:简化你的代码
【9月更文挑战第9天】本文将介绍Python中的一种强大工具——装饰器。我们将从基础概念开始,逐步深入到装饰器的实际应用,包括函数装饰器和类装饰器。我们将通过实例来展示如何利用装饰器简化代码,提高代码的可读性和可维护性。最后,我们将探讨装饰器的一些高级用法,以及如何避免在使用时可能遇到的问题。无论你是初学者还是有经验的开发者,这篇文章都将帮助你更好地理解和使用装饰器。
12 6
|
8天前
|
缓存 测试技术 Python
Python 中的装饰器:从入门到实践
【9月更文挑战第3天】本文将引导你理解 Python 中装饰器的概念,并通过实际代码示例展示如何创建和使用装饰器。我们将从基础出发,逐步深入到装饰器的高级应用,让你能够轻松掌握这一强大的工具。
|
2天前
|
Java Serverless Python
探索Python中的并发编程与`concurrent.futures`模块
探索Python中的并发编程与`concurrent.futures`模块
10 4
|
5天前
|
缓存 测试技术 开发者
探索Python中的装饰器:简化你的代码之旅
【9月更文挑战第6天】本文将深入探讨Python中一个强大而神秘的特性——装饰器。我们将通过实际例子揭示装饰器的工作原理,并展示如何利用它们来简化和增强你的代码。无论你是初学者还是有经验的开发者,这篇文章都将为你打开一扇门,让你的代码更加优雅和高效。
|
6天前
|
Python
Python中的装饰器:从入门到精通
【9月更文挑战第5天】在Python的世界里,装饰器是那些让代码更加优雅、简洁的秘密武器。它们就像是程序的化妆师,给函数或类涂上魔法,使其功能大增。本文将带你领略装饰器的魅力,从基础概念到高级用法一网打尽。
|
8天前
|
Python
Python中的装饰器:简化你的代码
【9月更文挑战第3天】装饰器,这个听起来有些神秘的名词,实际上在Python中扮演着重要的角色。它们就像是你的代码的小助手,帮你自动完成一些重复性的工作,让你的代码更加简洁、易读。本文将通过一个简单的例子,带你走进装饰器的世界,看看它们是如何工作的。