在Python中,`functools`模块提供了一个非常有用的装饰器`lru_cache()`,它实现了最近最少使用(Least Recently Used, LRU)缓存策略。

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
MSE Nacos/ZooKeeper 企业版试用,1600元额度,限量50份
简介: 在Python中,`functools`模块提供了一个非常有用的装饰器`lru_cache()`,它实现了最近最少使用(Least Recently Used, LRU)缓存策略。

在Python中,functools模块提供了一个非常有用的装饰器lru_cache(),它实现了最近最少使用(Least Recently Used, LRU)缓存策略。当函数被调用时,其结果会被缓存起来,以便在后续相同的函数调用时直接返回缓存的结果,而不是重新计算。这可以显著提高性能,特别是当函数计算成本较高或函数调用非常频繁时。

技术名称

  1. 装饰器(Decorators):Python中的装饰器是一种高级功能,允许你在不修改函数或方法源代码的情况下,给它们添加额外的功能。
  2. LRU缓存(LRU Cache):最近最少使用缓存策略,它淘汰最长时间未被使用的数据。

Python代码示例

下面是一个使用functools.lru_cache()的示例:

import functools
import time

@functools.lru_cache(maxsize=128)  # 缓存最多128个结果
def fibonacci(n):
    """计算斐波那契数列的第n项"""
    if n < 2:
        return n
    return fibonacci(n-1) + fibonacci(n-2)

# 第一次调用,计算fibonacci(10),并将结果缓存
start_time = time.time()
print(fibonacci(10))  # 输出斐波那契数列的第10项
print(f"计算时间: {time.time() - start_time:.6f}秒")

# 第二次调用,直接从缓存中获取fibonacci(10)的结果,不进行计算
start_time = time.time()
print(fibonacci(10))  # 再次输出斐波那契数列的第10项
print(f"缓存获取时间: {time.time() - start_time:.6f}秒")

# 清除缓存(可选)
fibonacci.cache_clear()

# 你可以通过fibonacci.cache_info()查看缓存的详细信息
print(fibonacci.cache_info())

注意:由于斐波那契数列的计算是递归的,并且对于较大的n值,计算成本会非常高。使用lru_cache()可以显著提高性能,因为它避免了重复计算相同的结果。在上面的示例中,你可以看到第二次调用fibonacci(10)时几乎不花费时间,因为结果直接从缓存中获取。

相关文章
|
5月前
|
数据采集 NoSQL 关系型数据库
Python爬虫去重策略:增量爬取与历史数据比对
Python爬虫去重策略:增量爬取与历史数据比对
|
29天前
|
机器学习/深度学习 算法 调度
【EI复现】基于深度强化学习的微能源网能量管理与优化策略研究(Python代码实现)
【EI复现】基于深度强化学习的微能源网能量管理与优化策略研究(Python代码实现)
|
2月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
72 4
|
3月前
|
缓存 负载均衡 网络协议
电商API接口性能优化技术揭秘:缓存策略与负载均衡详解
电商API接口性能优化是提升系统稳定性和用户体验的关键。本文聚焦缓存策略与负载均衡两大核心,详解其在电商业务中的实践。缓存策略涵盖本地、分布式及CDN缓存,通过全量或部分缓存设计和一致性维护,减少后端压力;负载均衡则利用反向代理、DNS轮询等技术,结合动态调整与冗余部署,提高吞吐量与可用性。文中引用大型及跨境电商平台案例,展示优化效果,强调持续监控与迭代的重要性,为电商企业提供了切实可行的性能优化路径。
|
4月前
|
数据可视化 数据挖掘 数据安全/隐私保护
Python实现时间序列动量策略:波动率标准化让量化交易收益更平稳
时间序列动量策略(TSMOM)是一种基于资产价格趋势的量化交易方法,通过建立多头或空头头寸捕捉市场惯性。然而,传统TSMOM策略因风险敞口不稳定而面临收益波动问题。波动率调整技术通过动态调节头寸规模,维持恒定风险水平,优化了策略表现。本文系统分析了波动率调整TSMOM的原理、实施步骤及优势,强调其在现代量化投资中的重要地位,并探讨关键参数设定与实际应用考量,为投资者提供更平稳的风险管理体验。
153 4
Python实现时间序列动量策略:波动率标准化让量化交易收益更平稳
|
3月前
|
网络协议 API Python
解析http.client与requests在Python中的性能比较和改进策略。
最后,需要明确的是,这两种库各有其优点和适用场景。`http.client` 更适合于基础且并行的请求,`requests` 则因其易用且强大的功能,更适用于复杂的 HTTP 场景。对于哪种更适合你的应用,可能需要你自己进行实际的测试来确定。
113 10
|
3月前
|
测试技术 Python
Python测试报告生成:整合错误截图,重复用例执行策略,调整测试顺序及多断言机制。
如何组织这一切呢?你可以写一本名为“Python测试之道”的动作指南手册,或者创建一个包含测试策略、测试顺序、多断言机制的脚本库。只要你的测试剧本编写得足够独到,你的框架就会像一位执行任务的超级英雄,将任何潜伏于代码深处的错误无情地揪出来展现在光天化日之下。这些整理好的测试结果,不仅有利于团队协作,更像冒险故事中的精彩篇章,带给读者无尽的探索乐趣和深刻的思考。
104 10
|
4月前
|
数据采集 前端开发 JavaScript
Python爬虫如何应对网站的反爬加密策略?
Python爬虫如何应对网站的反爬加密策略?
257 11
|
4月前
|
数据采集 Web App开发 前端开发
Python+Selenium爬虫:豆瓣登录反反爬策略解析
Python+Selenium爬虫:豆瓣登录反反爬策略解析
|
4月前
|
缓存 搜索推荐 CDN
HTTP缓存策略的区别和解决的问题
总的来说,HTTP缓存策略是一种权衡,需要根据具体的应用场景和需求来选择合适的策略。理解和掌握这些策略,可以帮助我们更好地优化网页性能,提高用户的浏览体验。
124 11

推荐镜像

更多