CUDA从入门到精通(五):线程并行

简介: 多线程我们应该都不陌生,在操作系统中,进程是资源分配的基本单元,而线程是CPU时间调度的基本单元(这里假设只有1个CPU)。 将线程的概念引申到CUDA程序设计中,我们可以认为线程就是执行CUDA程序的最小单元,前面我们建立的工程代码中,有个核函数概念不知各位童鞋还记得没有,在GPU上每个线程都会运行一次该核函数。

多线程我们应该都不陌生,在操作系统中,进程是资源分配的基本单元,而线程是CPU时间调度的基本单元(这里假设只有1个CPU)。

将线程的概念引申到CUDA程序设计中,我们可以认为线程就是执行CUDA程序的最小单元,前面我们建立的工程代码中,有个核函数概念不知各位童鞋还记得没有,在GPU上每个线程都会运行一次该核函数。

但GPU上的线程调度方式与CPU有很大不同。CPU上会有优先级分配,从高到低,同样优先级的可以采用时间片轮转法实现线程调度。GPU上线程没有优先级概念,所有线程机会均等,线程状态只有等待资源和执行两种状态,如果资源未就绪,那么就等待;一旦就绪,立即执行。当GPU资源很充裕时,所有线程都是并发执行的,这样加速效果很接近理论加速比;而GPU资源少于总线程个数时,有一部分线程就会等待前面执行的线程释放资源,从而变为串行化执行。

 

代码还是用上一节的吧,改动很少,再贴一遍:

#include "cuda_runtime.h"			//CUDA运行时API
#include "device_launch_parameters.h"	
#include <stdio.h>
cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size);
__global__ void addKernel(int *c, const int *a, const int *b)
{
    int i = threadIdx.x;
    c[i] = a[i] + b[i];
}
int main()
{
    const int arraySize = 5;
    const int a[arraySize] = { 1, 2, 3, 4, 5 };
    const int b[arraySize] = { 10, 20, 30, 40, 50 };
    int c[arraySize] = { 0 };
    // Add vectors in parallel.
    cudaError_t cudaStatus;
	int num = 0;
	cudaDeviceProp prop;
	cudaStatus = cudaGetDeviceCount(&num);
	for(int i = 0;i<num;i++)
	{
		cudaGetDeviceProperties(&prop,i);
	}
	cudaStatus = addWithCuda(c, a, b, arraySize);
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "addWithCuda failed!");
        return 1;
    }
    printf("{1,2,3,4,5} + {10,20,30,40,50} = {%d,%d,%d,%d,%d}\n",c[0],c[1],c[2],c[3],c[4]);
    // cudaThreadExit must be called before exiting in order for profiling and
    // tracing tools such as Nsight and Visual Profiler to show complete traces.
    cudaStatus = cudaThreadExit();
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "cudaThreadExit failed!");
        return 1;
    }
    return 0;
}
// 重点理解这个函数
cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size)
{
    int *dev_a = 0;	//GPU设备端数据指针
    int *dev_b = 0;
    int *dev_c = 0;
    cudaError_t cudaStatus;		//状态指示

    // Choose which GPU to run on, change this on a multi-GPU system.
    cudaStatus = cudaSetDevice(0);	//选择运行平台
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "cudaSetDevice failed!  Do you have a CUDA-capable GPU installed?");
        goto Error;
    }
    // 分配GPU设备端内存
    cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "cudaMalloc failed!");
        goto Error;
    }
    cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "cudaMalloc failed!");
        goto Error;
    }
    cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "cudaMalloc failed!");
        goto Error;
    }
    // 拷贝数据到GPU
    cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "cudaMemcpy failed!");
        goto Error;
    }
    cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "cudaMemcpy failed!");
        goto Error;
    }
    // 运行核函数
    addKernel<<<1, size>>>(dev_c, dev_a, dev_b);
    // cudaThreadSynchronize waits for the kernel to finish, and returns
    // any errors encountered during the launch.
    cudaStatus = cudaThreadSynchronize();	//同步线程
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "cudaThreadSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
        goto Error;
    }
    // Copy output vector from GPU buffer to host memory.
    cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);		//拷贝结果回主机
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "cudaMemcpy failed!");
        goto Error;
    }
Error:
    cudaFree(dev_c);	//释放GPU设备端内存
    cudaFree(dev_a);
    cudaFree(dev_b);    
    return cudaStatus;
}

红色部分即启动核函数的调用过程,这里看到调用方式和C不太一样。<<<>>>表示运行时配置符号,里面1表示只分配一个线程组(又称线程块、Block),size表示每个线程组有size个线程(Thread)。本程序中size根据前面传递参数个数应该为5,所以运行的时候,核函数在5个GPU线程单元上分别运行了一次,总共运行了5次。这5个线程是如何知道自己“身份”的?是靠threadIdx这个内置变量,它是个dim3类型变量,接受<<<>>>中第二个参数,它包含x,y,z 3维坐标,而我们传入的参数只有一维,所以只有x值是有效的。通过核函数中int i = threadIdx.x;这一句,每个线程可以获得自身的id号,从而找到自己的任务去执行。

 

下节我们介绍块并行。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
2月前
|
安全 数据处理 开发者
Python中的多线程编程:从入门到精通
本文将深入探讨Python中的多线程编程,包括其基本原理、应用场景、实现方法以及常见问题和解决方案。通过本文的学习,读者将对Python多线程编程有一个全面的认识,能够在实际项目中灵活运用。
|
1月前
|
监控 安全 Java
Java中的多线程编程:从入门到实践####
本文将深入浅出地探讨Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的摘要形式,本文将以一个简短的代码示例作为开篇,直接展示多线程的魅力,随后再详细解析其背后的原理与实现方式,旨在帮助读者快速理解并掌握Java多线程编程的基本技能。 ```java // 简单的多线程示例:创建两个线程,分别打印不同的消息 public class SimpleMultithreading { public static void main(String[] args) { Thread thread1 = new Thread(() -> System.out.prin
|
1月前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
2月前
|
算法 NoSQL Java
Springboot3新特性:GraalVM Native Image Support和虚拟线程(从入门到精通)
这篇文章介绍了Spring Boot 3中GraalVM Native Image Support的新特性,提供了将Spring Boot Web项目转换为可执行文件的步骤,并探讨了虚拟线程在Spring Boot中的使用,包括如何配置和启动虚拟线程支持。
124 9
Springboot3新特性:GraalVM Native Image Support和虚拟线程(从入门到精通)
|
1月前
|
安全 Java 调度
Java中的多线程编程入门
【10月更文挑战第29天】在Java的世界中,多线程就像是一场精心编排的交响乐。每个线程都是乐团中的一个乐手,他们各自演奏着自己的部分,却又和谐地共同完成整场演出。本文将带你走进Java多线程的世界,让你从零基础到能够编写基本的多线程程序。
35 1
|
1月前
|
Java 数据处理 开发者
Java多线程编程的艺术:从入门到精通####
【10月更文挑战第21天】 本文将深入探讨Java多线程编程的核心概念,通过生动实例和实用技巧,引导读者从基础认知迈向高效并发编程的殿堂。我们将一起揭开线程管理的神秘面纱,掌握同步机制的精髓,并学习如何在实际项目中灵活运用这些知识,以提升应用性能与响应速度。 ####
48 3
|
2月前
|
Java
Java中的多线程编程:从入门到精通
本文将带你深入了解Java中的多线程编程。我们将从基础概念开始,逐步深入探讨线程的创建、启动、同步和通信等关键知识点。通过阅读本文,你将能够掌握Java多线程编程的基本技能,为进一步学习和应用打下坚实的基础。
|
2月前
|
并行计算 安全 Java
Python 多线程并行执行详解
Python 多线程并行执行详解
75 3
|
3月前
|
安全 数据库连接 API
C#一分钟浅谈:多线程编程入门
在现代软件开发中,多线程编程对于提升程序响应性和执行效率至关重要。本文从基础概念入手,详细探讨了C#中的多线程技术,包括线程创建、管理及常见问题的解决策略,如线程安全、死锁和资源泄露等,并通过具体示例帮助读者理解和应用这些技巧,适合初学者快速掌握C#多线程编程。
86 0
|
3月前
|
SQL 存储 监控
SQLServer事务复制延迟优化之并行(多线程)复制
【9月更文挑战第12天】在SQL Server中,事务复制延迟会影响数据同步性。并行复制可通过多线程处理优化这一问题,提高复制效率。主要优化方法包括:配置分发代理参数、优化网络带宽、调整系统资源、优化数据库设计及定期监控维护。合理实施这些措施可提升数据同步的及时性和可靠性。