深度学习利器:TensorFlow在智能终端中的应用——智能边缘计算,云端生成模型给移动端下载,然后用该模型进行预测

简介:

前言

深度学习在图像处理、语音识别、自然语言处理领域的应用取得了巨大成功,但是它通常在功能强大的服务器端进行运算。如果智能手机通过网络远程连接服务器,也可以利用深度学习技术,但这样可能会很慢,而且只有在设备处于良好的网络连接环境下才行,这就需要把深度学习模型迁移到智能终端。

由于智能终端CPU和内存资源有限,为了提高运算性能和内存利用率,需要对服务器端的模型进行量化处理并支持低精度算法。TensorFlow版本增加了对Android、iOS和Raspberry Pi硬件平台的支持,允许它在这些设备上执行图像分类等操作。这样就可以创建在智能手机上工作并且不需要云端每时每刻都支持的机器学习模型,带来了新的APP。

本文主要基于看花识名APP应用,讲解TensorFlow模型如何应用于Android系统;在服务器端训练TensorFlow模型,并把模型文件迁移到智能终端;TensorFlow Android开发环境构建以及应用开发API。

看花识名APP

使用AlexNet模型、Flowers数据以及Android平台构建了“看花识名”APP。TensorFlow模型对五种类型的花数据进行训练。如下图所示:

Daisy:雏菊

(点击放大图像)

Dandelion:蒲公英

(点击放大图像)

Roses:玫瑰

(点击放大图像)

Sunflowers:向日葵

(点击放大图像)

Tulips:郁金香

(点击放大图像)

在服务器上把模型训练好后,把模型文件迁移到Android平台,在手机上安装APP。使用效果如下图所示,界面上端显示的是模型识别的置信度,界面中间是要识别的花:

(点击放大图像)

TensorFlow模型如何应用于看花识名APP中,主要包括以下几个关键步骤:模型选择和应用、模型文件转换以及Android开发。如下图所示:

(点击放大图像)

(点击放大图像)

模型训练及模型文件

本章采用AlexNet模型对Flowers数据进行训练。AlexNet在2012取得了ImageNet最好成绩,top 5准确率达到80.2%。这对于传统的机器学习分类算法而言,已经相当出色。模型结构如下:

(点击放大图像)

本文采用TensorFlow官方Slim(https://github.com/tensorflow/models/tree/master/slim)AlexNet模型进行训练。

  • 首先下载Flowers数据,并转换为TFRecord格式:
    DATA_DIR=/tmp/data/flowers
    python download_and_convert_data.py --dataset_name=flowers
     --dataset_dir="${DATA_DIR}"
  • 执行模型训练,经过36618次迭代后,模型精度达到85%
    TRAIN_DIR=/tmp/data/train
    python train_image_classifier.py --train_dir=${TRAIN_DIR} 
    --dataset_dir=${DATASET_DIR} --dataset_name=flowers  
    --dataset_split_name=train  --model_name=alexnet_v2 
     --preprocessing_name=vgg
  • 生成Inference Graph的PB文件
    python export_inference_graph.py  --alsologtostderr  
    --model_name=alexnet_v2  --dataset_name=flowers --dataset_dir=${DATASET_DIR} 
     --output_file=alexnet_v2_inf_graph.pb
  • 结合CheckPoint文件和Inference GraphPB文件,生成Freeze Graph的PB文件
    python freeze_graph.py  --input_graph=alexnet_v2_inf_graph.pb 
    --input_checkpoint= ${TRAIN_DIR}/model.ckpt-36618  --input_binary=true 
    --output_graph=frozen_alexnet_v2.pb --output_node_names=alexnet_v2/fc8/squeezed
  • 对Freeze Graph的PB文件进行数据量化处理,减少模型文件的大小,生成的quantized_alexnet_v2_graph.pb为智能终端中应用的模型文件
    bazel-bin/tensorflow/tools/graph_transforms/transform_graph  
    --in_graph=frozen_alexnet_v2.pb  --outputs="alexnet_v2/fc8/squeezed" 
    --out_graph=quantized_alexnet_v2_graph.pb --transforms='add_default_attributes
     strip_unused_nodes(type=float, shape="1,224,224,3")  remove_nodes(op=Identity, 
    op=CheckNumerics) fold_constants(ignore_errors=true)  fold_batch_norms 
    fold_old_batch_norms quantize_weights quantize_nodes 
     strip_unused_nodes sort_by_execution_order'

为了减少智能终端上模型文件的大小,TensorFlow中常用的方法是对模型文件进行量化处理,本文对AlexNet CheckPoint文件进行Freeze和Quantized处理后的文件大小变化如下图所示:

(点击放大图像)

量化操作的主要思想是在模型的Inference阶段采用等价的8位整数操作代替32位的浮点数操作,替换的操作包括:卷积操作、矩阵相乘、激活函数、池化操作等。量化节点的输入、输出为浮点数,但是内部运算会通过量化计算转换为8位整数(范围为0到255)的运算,浮点数和8位量化整数的对应关系示例如下图所示:

(点击放大图像)

量化Relu操作的基本思想如下图所示:

(点击放大图像)

TensorFlow Android应用开发环境构建

在Android系统上使用TensorFlow模型做Inference依赖于两个文件libtensorflow_inference.so和libandroid_tensorflow_inference_java.jar。这两个文件可以通过下载TensorFlow源代码后,采用bazel编译出来,如下所示:

  • 下载TensorFlow源代码

    git clone --recurse-submodules https://github.com/tensorflow/tensorflow.git

  • 下载安装Android NDK
  • 下载安装Android SDK
  • 配置tensorflow/WORKSPACE中android开发工具路径
    android_sdk_repository(name = "androidsdk", api_level = 23, build_tools_version = "25.0.2", path = "/opt/android",)
    android_ndk_repository(name="androidndk",  path="/opt/android/android-ndk-r12b",  api_level=14)
  • 编译libtensorflow_inference.so
    bazel build -c opt //tensorflow/contrib/android:libtensorflow_inference.so  
      --crosstool_top=//external:android/crosstool --host_crosstool_top=
    @bazel_tools//tools/cpp:toolchain --cpu=armeabi-v7a
  • 编译libandroid_tensorflow_inference_java.jar
    bazel build //tensorflow/contrib/android:android_tensorflow_inference_java

TensorFlow提供了Android开发的示例框架,下面基于AlexNet模型的看花识名APP做一些相应源码的修改,并编译生成Android的安装包:

  • 基于AlexNet模型,修改Inference的输入、输出的Tensor名称
    private static final String INPUT_NAME = "input";
    private static final String OUTPUT_NAME = "alexnet_v2/fc8/squeezed";
  • 放置quantized_alexnet_v2_graph.pb和对应的labels.txt文件到assets目录下,并修改Android文件路径
    private static final String MODEL_FILE = "file:///android_asset/quantized_alexnet_v2_graph.pb";
    private static final String LABEL_FILE = "file:///android_asset/labels.txt";
  • 编译生成安装包
    bazel build -c opt //tensorflow/examples/android:tensorflow_demo
  • 拷贝tensorflow_demo.apk到手机上,并执行安装,太阳花识别效果如下图所示:

    (点击放大图像)

TensorFlow移动端应用开发API

在Android系统中执行TensorFlow Inference操作,需要调用libandroid_tensorflow_inference_java.jar中的JNI接口,主要接口如下:

  • 构建TensorFlow Inference对象,构建该对象时候会加载TensorFlow动态链接库libtensorflow_inference.so到系统中;参数assetManager为android asset管理器;参数modelFilename为TensorFlow模型文件在android_asset中的路径。
    TensorFlowInferenceInterface inferenceInterface = new 
    TensorFlowInferenceInterface(assetManager, modelFilename);
  • 向TensorFlow图中加载输入数据,本App中输入数据为摄像头截取到的图片;参数inputName为TensorFlow Inference中的输入数据Tensor的名称;参数floatValues为输入图片的像素数据,进行预处理后的浮点值;[1,inputSize,inputSize,3]为裁剪后图片的大小,比如1张224*224*3的RGB图片。
    inferenceInterface.feed(inputName, floatValues, 1, inputSize, inputSize, 3);
  • 执行模型推理; outputNames为TensorFlow Inference模型中要运算Tensor的名称,本APP中为分类的Logist值。
    inferenceInterface.run(outputNames);
  • 获取模型Inference的运算结果,其中outputName为Tensor名称,参数outputs存储Tensor的运算结果。本APP中,outputs为计算得到的Logist浮点数组。
    inferenceInterface.fetch(outputName, outputs);

总结

本文基于看花识名APP,讲解了TensorFlow在Android智能终端中的应用技术。首先回顾了AlexNet模型结构,基于AlexNet的slim模型对Flowers数据进行训练;对训练后的CheckPoint数据,进行Freeze和Quantized处理,生成智能终端要用的Inference模型。然后介绍了TensorFlow Android应用开发环境的构建,编译生成TensorFlow在Android上的动态链接库以及java开发包;文章最后介绍了Inference API的使用方式。

参考文献

  1. http://www.tensorflow.org
  2. 深度学习利器:分布式TensorFlow及实例分析
  3. 深度学习利器:TensorFlow使用实战
  4. 深度学习利器:TensorFlow系统架构与高性能程序设计
  5. 深度学习利器:TensorFlow与深度卷积神经网络
  6. 深度学习利器:TensorFlow与NLP模型
















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/8317909.html,如需转载请自行联系原作者


相关文章
|
23天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
232 55
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
将Keras训练好的.hdf5模型转换为TensorFlow的.pb模型,然后再转换为TensorRT支持的.uff格式,并提供了转换代码和测试步骤。
113 3
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
|
6天前
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
49 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
132 5
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
96 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
108 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
108 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
81 5
|
2月前
|
存储 边缘计算 物联网
揭秘边缘计算:物联网时代的分布式智能
揭秘边缘计算:物联网时代的分布式智能
60 0
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
109 0