图书馆
图书馆Q是一家大型图书馆,图书馆藏书众多,纸质图书600多万册,电子图书7000多万册,总数有八千多万册,这些图书之前都是人工检索维护的,现在需要做一个系统来存储管理这些图书信息。
需求如下:
- 图书总量目前八千多万册,考虑到未来二十年的增长,需要系统能支持一亿的存储量。
- 图书信息很重要,不能接受丢失发生。
- 图书的名字和作者名字需要支持模糊搜索。
- 每本书的属性最多有一百多个,且不固定,不同类型的图书的属性列差异较大。且未来可能会新增属性列。
根据上面这些需求特点,要完成这个管理系统,需要两类系统支持:
- 分布式NoSQL数据库:解决两亿存储量的问题,解决属性列较多且不固定的问题,解决可靠性要求高的问题。
- 搜索系统:解决固定列模糊搜索的需求。
如果使用阿里云产品,那么对应的产品就是:
- Table Store:分布式NoSQL数据库。
- Elasticsearch:搜索系统,支持模糊搜索。
在管理系统中使用上述两个系统的时候,目前需要双写,当新增一本书的时候,需要将详细书本信息写入Table Store,将书本ID和作者,书名写入Elasticsearch,并且对书名,作者建索引。查询的时候,如果是根据书本ID,则直接查询Table Store。如果是根据书名模糊查询,则先查Elasticsearch,获取到匹配的书本的ID后,再到Table Store中查询详细信息。
如果Table Store到Elasticsearch有自动同步通道,那么只需要将新书信息写入Table Store即可,不再需要写Elasticsearch。减少了一次写入操作,且不用再考虑数据一致性问题,系统架构大大简化。那么如何才能实现这个自动同步通道呢?
目标
类似于上面的场景,有很多系统都有这样的需求:拥有PB级海量数据需要持久化存储,同时有一两个字段需要做模糊查询,比如姓名,手机号码等,目前很多解决方案需要双写分布式数据库和Elasticsearch,但这样不仅会带来开发、运维复杂度,而且还有数据不一致的问题。
针对上述问题,Table Store团队联合数据集成(CDP)和Elasticsearch团队上线了近实时的数据同步方案,用户只需要将数据写入Table Store,Table Store会负责将数据在10分钟内自动发送给Elasticsearch建索引。
相关产品
Table Store:阿里云分布式NoSQL数据库,专注于海量数据的存储服务,目前单表可支持10PB级,10万亿行以上的数据量,且数据量增大后性能仍然保持稳定。Table Store Stream功能是一种增量实时通道服务,类似于MySQL的binlog,可以通过Stream接口实时读取到最新的变化数据(Put/Update/Delete)。
数据集成 :阿里云数据管理平台,支持数据同步等众多数据功能。
Elasticsearch :阿里云Elasticsearch是刚推出的一项新服务,提供基于开源Elasticsearch及商业版X-Pack插件,致力于数据分析、数据搜索等场景服务。在开源Elasticsearch基础上提供企业级权限管控、安全监控告警、自动报表生成等功能。
三种产品在新解决方案中的角色如下:
产品 | Table Store | 数据集成 | Elasticsearch |
---|---|---|---|
角色 | 数据存储 | 数据同步通道 | 查询增强 |
限制
由于Table Store和Elasticsearch不是完全对等的产品,所以如果需要将数据导入Elasticsearch,那么在使用Table Store的时候有一些注意的地方:
Table Store主键列个数:
- 目前Table Store最大支持4个主键列,而Elasticsearch只支持一个,所以Table Store的表设计时只能使用一个主键列,如果之前有多个主键列,可以将多个主键列的值转换成String,然后拼接成一个主键列。
Table Store数据变化类型:
- 仅支持PUT(新增),UPDATE(更新)两种操作。
- 不支持DELETE操作。
Table Store多版本:
- 仅支持单版本,不支持多版本
Elasticsearch:
- 版本:支持阿里云和开源的5..版本。
延时:
- 目前使用的是周期调度,每隔5分钟调度一次,再加上插件中有5分钟延迟,同步总延迟在5~10分钟。
开通服务
- Table Store:
- 登陆Table Store首页:https://www.aliyun.com/product/ots/
- 点击开通。
- 新建实例和表,表需要开通Stream,有效时间可以选择24小时。
- Table Store支持按预留CU和按量付费两种收费模式,如果创建表时指定读写CU都为0则表示为按量付费,后期如果没有使用则不收费。且目前每月有10GB,1000万CU的免费额度。
- Table Store中表需要开通Stream功能。
- 数据集成
- 登陆DataWorks绑定AK。
- 然后创建项目即可。
- 注意:子账号不能创建项目,只能被主账号授权。
- Elasticsearch
- 登陆Elasticsearch首页:https://data.aliyun.com/product/elasticsearch。
- 点击立即购买,购买时的VPC必须和之前购买的ECS在同一个VPC环境内部。
- 根据数据量预估,购买相应的实例大小。
- 目前收费是按实例规格收费。
使用方式
- 写
- Table Store:PutRow/BatchWriteRow接口写入数据
- Elasticsearch:无须写入
- 读
- Elasticsearch:搜索到请求结果后,拿到每个doc的_id字段值。
- Table Store:Elasticsearch中的_id字段就是Table Store中的主键值,获取到一系列_id值后,使用Table Store的BatchGetRow可以查询到完整数据。
同步流程
- 整个同步流程应该包括下面两个步骤:
- 导出Table Store的全量数据到Elasticsearch,并且记录开始时间T1。
- 等全量导出结束后,再开始同步增量数据,增量数据开始同步的时间是T1。
- 对于全量导出,需要使用otsreader插件,配置中的Range使用INF_MIN到INF_MAX,也就是导出所有数据。
- 对于增量同步,需要配置起始时间和结束时间为一个变量,在调度周期配置的时候配置起始时间必须小于等于T1,否则可能会有数据丢失发生。
- 我们下面会以增量同步为例来介绍如何配置增量同步任务。
Table Store配置
无须配置
Elasticsearch配置
无须配置
数据集成配置
1. 创建数据源(可选)
- 如果已经创建了Table Store的数据源,则可以跳过这一步。
- 如果不希望创建数据源,也可以在配置页面配置相应的endpoint,instanceName,AccessKeyID和AccessKeySecret。如果希望创建,则按照下面步骤操作。
- 登录阿里云大数据开发套件:数据源地址。
- 单击左侧 离线同步 > 数据源。
- 在数据源配置页面,选择右上角 新增数据源 ,会有一个弹出框。
- 按照说明填写:
- 数据源名称:填写一个数据源标识符,比如车联网。
- 数据源描述:填入描述符,比如:车联网GPS数据存储。
- 数据源类型:选择 ots ,ots是Table Store曾用名。
- OTS Endpoint:填入TableStore 实例页面的实例地址,如果Table Store的实例和目标产品(比如Elasticsearch)在同一个region,则可以填入私网地址,否则需要填入公网地址,不能填入VPC地址。
- OTS 实例ID:填入Table Store的实例名称。
- Access Id:填入阿里云网站的AccessKeyID。
- Access Key:填入阿里云网站AccessKeyID对应的AccessKeySecret。
- 点击 测试连通性 ,如果成功则会在右上角提示:测试连接成功。 如果失败,点击endpoint是否配置正确,如果仍然无法解决,提工单联系数据集成。
- 填好后的页面类似下面这样:
- 单击确定,数据源创建成功,此时在数据源页面会出现一个新的数据源信息;
2. 创建导出任务
- 单击数据集成地址,进入数据集成的页面,会出现模式选择:
- 单击 脚本模式 ,弹出一个 导入模板 配置。
- 在导入模板配置里面:
- 来源类型:OTS Stream
- 目标类型:Elasticsearch
- 单击确认,则进入配置界面。
3. 完善配置项
在配置界面,已经提前嵌入了OTSStreamReader和ElasticsearchWriter的模板,每一项配置后面都做了解释。
{
"type": "job",
"version": "1.0",
"configuration": {
"setting": {
"errorLimit": {
"record": "0" # 允许出错的个数,当错误超过这个数目的时候同步任务会失败。
},
"speed": {
"mbps": "1", # 每次同步任务的最大流量。
"concurrent": "1" # 每次同步任务的并发度。
}
},
"reader": {
"plugin": "otsstream", # Reader插件的名称。
"parameter": {
"endpoint": "", # TableStore中实例的endpoint。
"accessId": "", # 阿里云的AccessKeyID。
"accessKey": "", # 阿里云的AccessKeySecret。
"instanceName": "", # TableStore的实例名,如果使用DataSource,则需要新增配置项datasource,不再需要配置endpoint,accessId,accessKey和instanceName。
"dataTable": "", # TableStore中的表名。
"statusTable": "TableStoreStreamReaderStatusTable", # 存储TableStore Stream状态的表,一般不需要修改。
"startTimestampMillis": "", # 开始导出的时间点,由于是增量导出,需要循环启动此任务,则这里每次启动的时候的时间都不一样,这里需要设置一个变量,比如${
start_time}。
"endTimestampMillis": "", # 结束导出的时间点。这里也需要设置一个变量,比如${
end_time}。
"date": "yyyyMMdd", # 导出哪一天的数据,功能和startTimestampMillis、endTimestampMillis重复,这一项需要删除。
"mode": "single_version_and_update_only", # TableStore Stream导出数据的格式,目前ElasticSearch只能接收这种格式的,这个不需要修改。如果配置模板中没有则需要增加。
"column":[ # 需要导出TableStore中的哪些列到ElasticSearch中去,如果配置模板中没有则需要增加。
{
"name":"uid"},
{
"name":"name"},
{
"name":"phone"}
],
"isExportSequenceInfo": false, # single_version_and_update_only 模式下只能是false。
"maxRetries": 30 # 最大重试次数。
}
},
"writer": {
"plugin": "elasticsearch", # Writer插件的名称:ElasticSearchWriter,不需要修改。
"parameter": {
"endpoint": "",# ElasticSearch的endpoint,控制台上有。
"accessId": "",# 如果使用了X-PACK插件,则这里需要填写username,如果没使用,则这里填空字符串即可。阿里云Elasticsearch使用了X-PACK插件,这里需要填写username。
"accessKey": "", # 如果使用了X-PACK插件,则这里需要填写password,如果没使用,则这里填空字符串即可。阿里云Elasticsearch使用了X-PACK插件,这里需要填写password。
"index": "", # ElasticSearch的索引名称,如果之前没有,插件会自动创建。
"indexType": "", # ElasticSearch中相应索引下的类型名称
"cleanup": true, # 是否在每次导入数据到ElasticSearch的时候清空原有数据,全量导入/重建索引的时候需要设置为true,同步增量的时候必须为false,这里因为是同步,则需要设置为false。
"discovery": false, # 是否自动发现,设置为true
"batchSize": 1000, # 每批导出的个数
"splitter": ",", # 如果插入数据是array,就使用指定分隔符。
"column": [ # ElasticSearch中的列名,顺序和Reader中的Column顺序一致
{
"name": "uid", # TableStore中的主键列是uid,这里也有同名uid,用type:id表示这一列是主键
"type": "id" # id表示这一列是主键,id不是ElasticSearch的内置类型,是ElasticSearchWriter提供的虚拟类型
},
{
"name": "name", # 对应于TableStore中的属性列:name
"type": "text" # 文本类型,采用默认分词
}
]
}
}
}
}
4. 保存任务
- 点击上部的 保存 按钮,则弹出一个对话框,输入任务名称后按确定即可。
5. 设置调度资源
- 由于目前数据集成还没办法自动访问VPC环境内的Elasticsearch,所以暂时需要用户自己购买VPC内的ECS机器作为调度资源。
- 购买一台ECS,新购ECS所在的VPC需要和Elasticsearch的VPC是同一个。
- 进入 DataWorks > 调度资源列表 ,单击 新增调度资源 。
- 在弹出的对话框中输入:资源名称,选择:归属项目。
- 然后点击 确定 ,会提示 添加调度资源成功 。
- 点击 管理服务器 ,会弹出一个新的弹出框。
- 点击 增加服务器 ,会弹出一个新的弹出框。
- 选择 专有网络 。
- 输入刚刚购买的ECS的:ECS UUID。登陆ECS,以root身份执行命令
bash dmidecode | grep UUID
即可获取到UUID。 - 输入刚刚购买的ECS的内网:机器IP。
- 单击 添加 。
- 如果是添加机器,需要初始化服务器,点击 调度资源列表 页面相应资源名称后面的 服务器初始化 ,会弹出初始化步骤,按这个步骤执行。
- 执行完成后,再点击 调度资源列表 页面相应资源名称后面的 服务器管理 ,点击 刷新 ,当 服务状态 变为 正常 时,表示调度资源配置成功。
6. 运行任务(测试)
- 可以先通过运行任务来测试配置是否正确和符合预期。
- 回到任务配置页面 数据集成 > 离线同步 > 同步任务 > 数据同步 。
- 双击刚刚创建的任务:tablestore2es,点击配置内容上部的 运行 。
- 这时候会弹出一个参数设置框,设置之前配置的变量:
- 填完值后,点击 确认后,任务会立即开始运行。
- 运行结束后,如果没有报错,则执行成功,在日志里面会打印同步的数据行数。
- 最后可以到Elasticsearch中查询索引成功的文档数。具体方法见后面的 <9. 验证结果> 。
7. 提交任务
- 回到任务配置页面 数据集成 > 离线同步 > 同步任务 > 数据同步 。
- 双击刚刚创建的任务:tablestore2es,点击配置内容上部的 提交 。
配置调度参数:
- 调度类型:周期调度
- 自动重跑:√
- 生效日期:默认值
- 调度周期:分钟
- 起始时间:默认值
- 时间间隔:5分钟
- start_time:$[yyyymmddhh24miss-10/24/60],表示调度时间-10分钟。
- end_time:$[yyyymmddhh24miss-5/24/60],表示调度时间-5分钟。
- 跨周期依赖:可以选择:自依赖,等待上一调度结束,才能接续运行。
提交任务后,原有任务处于:直读状态。
8. 绑定调度资源
- 切换到 运维中心 > 任务列表 > 周期任务 ,可以看到刚刚创建的周期任务:
选中刚刚创建的周期任务:tablestore2es。点击下部的 修改资源组 ,会弹出一个选择框,选择刚刚创建的资源组名称:
点击 确认 ,即可绑定成功。
9. 验证结果
- 周期任务是从下一天的00:00点开始执行。
- 等执行完一个任务后,可以在ECS上通过下述命令查看Elasticsearch中的数据量:
curl -XGET http://endpoint/index_name/type_name/_count?pretty -d '
{
"query": {
"match_all": {}
}
}'
结果类似下面:
{
"count" : 1000, # ElasticSearch中index_name索引的type_name类型中的doc数
"_shards" : {
# 这个是ElasticSearch返回数据相关的meta值,表示总共有5个shard,全部成功返回了结果
"total" : 5,
"successful" : 5,
"skipped" : 0,
"failed" : 0
}
}
9. 下一步计划
- 至此,TableStore数据通过数据集成同步到Elasticsearch的配置完成了,延迟在5分钟到10分钟之间。
- 虽然目前可以运行了,但是仍然存在一些问题。
- 需要 设置调度资源 ,比较麻烦。预计十二月中旬的时候这一步可以自动处理,不再需要配置。使用会更加简单。
- 延迟在 5~10 分钟,对于部分系统而言,可能延迟比较大,预计十二月底的时候可以减少到秒级。时效性会更高。
- 在使用中有任何问题,可以加入表格存储钉钉技术交流群:11789671