日志服务(SLS)集成 Spark 流计算实战

本文涉及的产品
对象存储 OSS,OSS 加速器 50 GB 1个月
简介: 日志服务集成 Spark 流式计算:使用Spark Streaming和Structured Streaming对采集到日志服务中的数据进行消费,计算并将结果写回到日志服务。

前言

日志服务作为一站式的日志的采集与分析平台,提供了各种用户场景的日志采集能力,通过日志服务提供的各种与·与SDK,采集客户端(Logtail),Producer,用户可以非常容易的把各种数据源中的数据采集到日志服务的Logstore中。同时为了便于用户对日志进行处理,提供了各种支持流式消费的SDK,如各种语言的消费组,与 Spark,Flink,Storm 等各种流计算技术无缝对接的Connector,以便于用户根据自己的业务场景非常便捷的处理海量日志。

从最早的Spark Streaming到最新的Stuctured Streaming,Spark 一直是最流行的流计算框架之一。使用日志服务的Spark SDK,可以非常方便的在Spark 中消费日志服务中的数据,同时也支持将 Spark 的计算结果写入日志服务。

日志服务基础概念

日志服务的存储层是一个类似Kafka的Append only的FIFO消息队列,包含如下基本概念:

  • 日志(Log):由时间、及一组不定个数的Key-Value对组成。
  • 日志组(LogGroup):一组日志的集合,包含相同Meta信息如Topic,Source,Tags等。是读写的基本单位。

image

图-1 Log与LogGroup的关系

  • Shard:分区,LogGroup读写基本单元,对应于Kafka的partition。
  • Logstore:日志库,用以存放同一类日志数据。Logstore会包含1个或多个Shard。
  • Project:Logstore存放容器,包含一个或者多个Logstore。

准备工作

1)添加Maven依赖:

<dependency>
   <groupId>com.aliyun.emr</groupId>
   <artifactId>emr-logservice_2.11</artifactId>
   <version>1.9.0</version>
</dependency>

Github源码下载
2)计划消费的日志服务project,logstore以及对应的endpoint。
3)用于访问日志服务Open API的Access Key。

对 Spark Streaming 的支持

Spark Streaming是Spark最早推出的流计算技术,现在已经进入维护状态,不再会增加新的功能。但是考虑到Spark Streaming 的使用仍然非常广泛,我们先从Spark Streaming开始介绍。Spark Streaming 提供了一个DStream 的数据模型抽象,本质是把无界数据集拆分成一个一个的RDD,转化为有界数据集的流式计算。每个批次处理的数据就是这段时间内从日志服务消费到的数据。

image

图-2 DStream

Spark Streaming 从日志服务消费支持 Receiver 和 Direct 两种消费方式。

Receiver模式

Receivers的实现内部实现基于日志服务的消费组(Consumer Library)。数据拉取与处理完全分离。消费组自动均匀分配Logstore内的所有shard到所有的Receiver,并且自动提交checkpoint到SLS。这就意味着Logstore内的shard个数与Spark 实际的并发没有对应关系。
对于所有的Receiver,接收到的数据默认会保存在Spark Executors中,所以Failover的时候有可能造成数据丢失,这个时候就需要开启WAL日志,Failover的时候可以从WAL中恢复,防止丢失数据。

SDK将SLS中的每行日志解析为JSON字符串形式,Receiver使用示例如下所示:

object SLSReceiverSample {
  def main(args: Array[String]): Unit = {
    val project = "your project"
    val logstore = "your logstore"
    val consumerGroup = "consumer group"
    val endpoint = "your endpoint"
    val accessKeyId = "access key id"
    val accessKeySecret = "access key secret"
    val batchInterval = Milliseconds(5 * 1000)

    val conf = new SparkConf().setAppName("Test SLS Loghub")
    val ssc = new StreamingContext(conf, batchInterval)
    val stream = LoghubUtils.createStream(
      ssc,
      project,
      logstore,
      consumerGroup,
      endpoint,
      accessKeyId,
      accessKeySecret,
      StorageLevel.MEMORY_AND_DISK,
      LogHubCursorPosition.END_CURSOR)

    stream.checkpoint(batchInterval * 2).foreachRDD(rdd =>
      rdd.map(bytes => new String(bytes)).top(10).foreach(println)
    )
    ssc.checkpoint("hdfs:///tmp/spark/streaming")
    ssc.start()
    ssc.awaitTermination()
  }
}

除Project,Logstore,Access Key 这些基础配置外,还可以指定StorageLevel,消费开始位置等。

Direct模式

Direct模式不再需要Receiver,也不依赖于消费组,而是使用日志服务的低级API,在每个批次内直接从服务端拉取数据处理。对于Logstore中的每个Shard来说,每个批次都会读取指定位置范围内的数据。为了保证一致性,只有在每个批次确认正常结束之后才能把每个Shard的消费结束位置(checkpoint)保存到服务端。

为了实现Direct模式,SDK依赖一个本地的ZooKeeper,每个shard的checkpoint会临时保存到本地的ZooKeeper,等用户手动提交checkpoint时,再从ZooKeeper中同步到服务端。Failover时也是先从本地ZooKeeper中尝试读上一次的checkpoint,如果没有读到再从服务端获取。

object SLSDirectSample {
  def main(args: Array[String]): Unit = {
    val project = "your project"
    val logstore = "your logstore"
    val consumerGroup = "consumerGroup"
    val endpoint = "endpoint"
    val accessKeyId = "access key id"
    val accessKeySecret = "access key secret"
    val batchInterval = Milliseconds(5 * 1000)
    val zkAddress = "localhost:2181"
    val conf = new SparkConf().setAppName("Test Direct SLS Loghub")
    val ssc = new StreamingContext(conf, batchInterval)
    val zkParas = Map("zookeeper.connect" -> zkAddress)
    val loghubStream = LoghubUtils.createDirectStream(
      ssc,
      project,
      logstore,
      consumerGroup,
      accessKeyId,
      accessKeySecret,
      endpoint,
      zkParas,
      LogHubCursorPosition.END_CURSOR)

    loghubStream.checkpoint(batchInterval).foreachRDD(rdd => {
      println(s"count by key: ${rdd.map(s => {
        s.sorted
        (s.length, s)
      }).countByKey().size}")
      // 手动更新checkpoint
      loghubStream.asInstanceOf[CanCommitOffsets].commitAsync()
    })
    ssc.checkpoint("hdfs:///tmp/spark/streaming") // set checkpoint directory
    ssc.start()
    ssc.awaitTermination()
  }
}

Direct模式示例

如何限速

在Receiver中,如果需要限制消费速度,我们只需要调整 Consumer Library 本身的参数即可。而Direct方式是在每个批次开始时从SLS拉取数据,这就涉及到一个问题:一个批次内拉取多少数据才合适。如果太多,一个批次内处理不完,造成处理延时。如果太少会导worker空闲,工作不饱和,消费延时。这个时候我们就需要合理配置拉取的速度和行数,实现一个批次尽可能多处理又能及时完成的目标。理想状态下Spark 消费的整体速率应该与SLS采集速率一致,才能实现真正的实时处理。

由于SLS的数据模型是以LogGroup作为读写的基本单位,而一个LogGroup中可能包含上万行日志,这就意味着Spark中直接限制每个批次的行数难以实现。因此,Direct限流涉及到两个配置参数:

参数 说明 默认值
spark.streaming.loghub.maxRatePerShard 每个批次每个Shard读取行数,决定了限流的下限 10000
spark.loghub.batchGet.step 每次请求读取LogGroup个数,决定了限流的粒度 100

可以通过适当缩小spark.loghub.batchGet.step来控制限流的精度,但是即便如此,在某些情况下还是会存在较大误差,如一个LogGroup中存在10000行日志,spark.streaming.loghub.maxRatePerShard设置为100,spark.loghub.batchGet.step设置为1,那一个批次内该shard还是会拉取10000行日志。

两种模式的对比

和Receiver相比,Direct有如下的优势:

  1. 降低资源消耗,不需要占用Executor资源来作为Receiver的角色。
  2. 鲁棒性更好,在计算的时候才会从服务端真正消费数据,降低内存使用,不再需要WAL,Failover 直接在读一次就行了,更容易实现exactly once语义。
  3. 简化并行。Spark partition 与 Logstore 的 shard 个数对应,增加shard个数就能提高Spark任务处理并发上限。

但是也存在一些缺点:

  1. 在SLS场景下,需要依赖本地的 ZooKeeper 来保存临时 checkpoint,当调用 commitAsync 时从 ZooKeeper同步到日志服务服务端。所以当需要重置 checkpoint 时,也需要先删除本地 ZooKeeper 中的 checkpoint 才能生效。
  2. 上一个批次保存 checkpoint 之前,下一个批次无法真正开始,否则 ZooKeeper 中的 checkpoint 可能会被更新成一个中间状态。目前SDK在每个批次会检查是否上一个批次的 checkpoint 还没有提交,如果没有提交则生成一个空批次,而不是继续从服务端消费。
  3. 在 SLS 场景下,限流方式不够精确。

Spark Streaming结果写入SLS

与消费SLS相反,Spark Streaming的处理结果也可以直接写入SLS。使用示例:

...
    val lines = loghubStream.map(x => x)

 // 转换函数把结果中每条记录转为一行日志
    def transformFunc(x: String): LogItem = {
      val r = new LogItem()
      r.PushBack("key", x)
      r
    }

    val callback = new Callback with Serializable {
      override def onCompletion(result: Result): Unit = {
        println(s"Send result ${result.isSuccessful}")
      }
    }
    // SLS producer config
    val producerConfig = Map(
      "sls.project" -> loghubProject,
      "sls.logstore" -> targetLogstore,
      "access.key.id" -> accessKeyId,
      "access.key.secret" -> accessKeySecret,
      "sls.endpoint" -> endpoint,
      "sls.ioThreadCount" -> "2"
    )
    lines.writeToLoghub(
      producerConfig,
      "topic",
      "streaming",
      transformFunc, Option.apply(callback))

    ssc.checkpoint("hdfs:///tmp/spark/streaming") // set checkpoint directory
    ssc.start()
    ssc.awaitTermination()

对Structured Streaming的支持

Structured  Streaming 并不是最近才出现的技术,而是早在16年就已经出现,但是直到 Spark 2.2.0 才正式推出。其数据模型是基于无界表的概念,流数据相当于往一个表上不断追加行。

image

图-3 无界表模型

与Spark Streaming相比,Structured Streaming主要有如下特点:

  1. 底层实现基于Spark SQL引擎,可以使用大多数Spark SQL的函数。和Spark SQL共用大部分API,如果对Spark SQL熟悉的用户,非常容易上手。复用Spark SQL的执行引用,性能更佳。
  2. 支持 Process time 和 Event time,而Spark Streaming只支持 Process Time。
  3. 批流同一的API。Structured Streaming 复用Spark SQL的 DataSet/DataFrame模型,和 RDD/DStream相比更High level,易用性更好。
  4. 实时性更好,默认基于micro-batch模式。在 Spark 2.3 中,还增加了连续处理模型,号称可以做到毫秒级延迟。
  5. API 对用户更友好,只保留了SparkSession一个入口,不需要创建各种Context对象,使用起来更简单。

SDK使用示例

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{StringType, StructField, StructType}

object StructuredStreamingDemo {
  def main(args: Array[String]) {

    val spark = SparkSession
      .builder
      .appName("StructuredLoghubWordCount")
      .master("local")
      .getOrCreate()

    import spark.implicits._
    val schema = new StructType(
      Array(StructField("content", StringType)))
    val lines = spark
      .readStream
      .format("loghub")
      .schema(schema)
      .option("sls.project", "your project")
      .option("sls.store", "your logstore")
      .option("access.key.id", "your access key id")
      .option("access.key.secret", "your access key secret")
      .option("endpoint", "your endpoint")
      .option("startingoffsets", "latest")
      .load()
      .select("content")
      .as[String]

    val wordCounts = lines.flatMap(_.split(" ")).groupBy("value").count()

    val query = wordCounts.writeStream
      .outputMode("complete")
      .format("loghub")
      .option("sls.project", "sink project")
      .option("sls.store", "sink logstore")
      .option("access.key.id", "your access key id")
      .option("access.key.secret", "your access key secret")
      .option("endpoint", "your endpoint")
      .option("checkpointLocation", "your checkpoint dir")
      .start()

    query.awaitTermination()
  }
}

代码解释:
1)schema 声明了我们需要的字段,除了日志中的字段外,还有如下的内部字段:

__logProject__
__logStore__
__shard__
__time__
__topic__
__source__
__sequence_number__ // 每行日志唯一id

如果没有指定schema,SDK默认提供一个__value__字段,其内容为由所有字段组成的一个JSON字符串。

2)lines 定义了一个流。
startingoffsets:开始位置,支持:

  • latest :日志服务最新写入位置。强烈建议从latest开始,从其他位置开始意味着需要先处理历史数据,可能需要等待较长时间才能结束。
  • earliest:日志服务中最早的日志对应的位置。
  • 或者为每个shard指定一个开始时间,以JSON形式指定。

maxOffsetsPerTrigger:批次读取行数,SDK中默认是64*1024 。

3)结果写入到日志服务
format 指定为Loghub即可。

不足之处

  1. 不支持手动提交checkpoint,SDK内部自动保存checkpoint到checkpointLocation中。
  2. 不再需要提供consumerGroup名称,也就是说checkpoint没有保存到SLS服务端,无法在日志服务里面监控消费延迟,只能通过Spark 任务日志观察消费进度。

参考资料

官方文档:https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
SLS SDK例子:https://github.com/aliyun/aliyun-emapreduce-sdk/tree/master-2.x/examples/src/main/scala/com/aliyun/emr/examples/sql/streaming
日志服务实时消费:https://help.aliyun.com/document_detail/28998.html

欢迎扫群加入日志服务技术交流钉钉群
image

相关实践学习
通过日志服务实现云资源OSS的安全审计
本实验介绍如何通过日志服务实现云资源OSS的安全审计。
目录
相关文章
|
9月前
|
监控 容灾 算法
阿里云 SLS 多云日志接入最佳实践:链路、成本与高可用性优化
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
983 54
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。
450 9
|
7月前
|
分布式计算 Java 大数据
springboot项目集成dolphinscheduler调度器 可拖拽spark任务管理
springboot项目集成dolphinscheduler调度器 可拖拽spark任务管理
423 2
|
存储 SQL 关系型数据库
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log、原理、写入过程;binlog与redolog区别、update语句的执行流程、两阶段提交、主从复制、三种日志的使用场景;查询日志、慢查询日志、错误日志等其他几类日志
944 35
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log
|
12月前
|
存储 缓存 关系型数据库
图解MySQL【日志】——Redo Log
Redo Log(重做日志)是数据库中用于记录数据页修改的物理日志,确保事务的持久性和一致性。其主要作用包括崩溃恢复、提高性能和保证事务一致性。Redo Log 通过先写日志的方式,在内存中缓存修改操作,并在适当时候刷入磁盘,减少随机写入带来的性能损耗。WAL(Write-Ahead Logging)技术的核心思想是先将修改操作记录到日志文件中,再择机写入磁盘,从而实现高效且安全的数据持久化。Redo Log 的持久化过程涉及 Redo Log Buffer 和不同刷盘时机的控制参数(如 `innodb_flush_log_at_trx_commit`),以平衡性能与数据安全性。
684 5
图解MySQL【日志】——Redo Log
|
11月前
|
监控 Java 应用服务中间件
Tomcat log日志解析
理解和解析Tomcat日志文件对于诊断和解决Web应用中的问题至关重要。通过分析 `catalina.out`、`localhost.log`、`localhost_access_log.*.txt`、`manager.log`和 `host-manager.log`等日志文件,可以快速定位和解决问题,确保Tomcat服务器的稳定运行。掌握这些日志解析技巧,可以显著提高运维和开发效率。
1276 13
|
11月前
|
缓存 Java 编译器
|
11月前
|
SQL druid Oracle
【YashanDB知识库】yasdb jdbc驱动集成druid连接池,业务(java)日志中有token IDENTIFIER start异常
客户Java日志中出现异常,影响Druid的merge SQL功能(将SQL字面量替换为绑定变量以统计性能),但不影响正常业务流程。原因是Druid在merge SQL时传入null作为dbType,导致无法解析递归查询中的`start`关键字。
|
SQL 关系型数据库 MySQL
MySQL事务日志-Undo Log工作原理分析
事务的持久性是交由Redo Log来保证,原子性则是交由Undo Log来保证。如果事务中的SQL执行到一半出现错误,需要把前面已经执行过的SQL撤销以达到原子性的目的,这个过程也叫做"回滚",所以Undo Log也叫回滚日志。
749 7
MySQL事务日志-Undo Log工作原理分析

相关产品

  • 日志服务