从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案。

01 AI搜索落地的挑战

在过去一年中,基座大模型技术的快速迭代推动了 AI 搜索的演进,主要体现在以下几个方面:

搜索技术链路重构

基于大模型的全面重构正在重塑 AI 搜索的技术链路。从数据采集、文档解析、向量检索到查询分析、意图识别、排序模型和知识图谱等各个环节,都在经历深刻变革。新的交互方式如对话式搜索、答案总结、智能客服、企业数字员工和虚拟人逐渐成为主流,不仅提升了用户体验,也为更多应用场景提供了可能。

AI 搜索作为基础设施

AI 搜索已成为各类 AI 应用的基础技术之一。作为热门的 AI 原生应用,它不仅驱动了知识类 AI 应用的发展,还逐步成为各大基础模型的内置能力。例如,向量检索、检索增强生成(RAG)和语义搜索等技术已在多个领域广泛应用。这种集成化趋势增强了 AI 搜索在不同场景下的适应性和灵活性。

效果提升面临的瓶颈

尽管 AI 搜索在效果上取得了显著进步,但幻觉问题仍是制约其广泛应用的主要因素,尤其在对知识准确性要求极高的业务场景中更为突出。此外,高成本和隐私安全可控性低也是实施过程中面临的重要挑战。

为应对这些问题,阿里云 Elasticsearch 推出了创新的 AI 搜索方案,使用 RAG 技术对检索增强生成的各个环节进行能力增强,并深度融合了企业版 AI Assistant,将 RAG 技术应用于 AIOps 领域。

02 Elasticsearch 向量性能5倍提升

Elasticsearch 向量引擎持续优化,特别是针对性能与成本的改进尤为突出。初期,由于普遍存在的认知偏差——认为 ES 向量引擎虽功能强大但在性能上可能存在短板,尤其是对于 Java 生态系统中的应用——这一观点正逐渐被其技术演进所颠覆。自8.0初始版本至已经迈入的8.15版本的历程中,Elasticsearch 不断迭代,特别是在性能优化方面取得了显著进展,其中包括但不限于对硬件加速技术的有效整合。

Elasticsearch 利用硬件加速技术在向量检索领域,尤其是处理复杂相似度计算任务时,实现了显著的性能飞跃。这种技术创新不仅限于理论层面,实践证明,通过硬件加速器的深度融合,部分计算密集型操作的效率提升了数倍乃至更多。例如,从2022年9月至今的基准测试数据可直观看出,查询响应时间从最初100ms大幅缩减至现在20ms左右,彰显了 Elasticsearch 向量检索迭代升级带来的巨大性能提升。

Elasticsearch在内存优化同样值得关注,通过向量量化技术,所需内存仅为原先需求的四分之一,极大提升了资源利用率。在最新的版本中,BBQ(Better Binary Quantization)为Elasticsearch 在量化方面带来一次飞跃,将 float32 维度缩减为位,在保持高排名质量的同时减少约 95% 的内存。BBQ 在索引速度(量化时间减少 20-30 倍)、查询速度(查询速度提高 2-5 倍)方面优于乘积量化 (Product Quantization - PQ) 等传统方法,并且不会额外损失准确性。

03 Elasticsearch 企业版 AI 能力全面解读

语义扩展与稀疏向量表示:

Elasticsearch 利用诸如稀疏编码技术,不仅能够基于原始词汇建立索引,还能有效扩展至与其相关的概念或词汇,每项扩展均附有模型计算出的权重,增强了语义理解的深度和广度。这得益于稀疏向量技术,它以较低内存占用高效存储信息,对比稠密向量需全内存索引,显著提升了资源效率。

查询效率与资源优化:

查询过程受益于倒排索引结构,避免了向量相似度匹配的开销,加速了检索速度。此外,Elasticsearch 的稀疏向量减少了内存需求,进一步优化了资源利用。

混合搜索策略:

现代搜索需求促使 Elasticsearch 支持多模态查询,结合文本、向量检索以及rrf混合排序方法,以增强结果的相关性和覆盖范围。这种混合搜索策略能够召回更多样化的数据,提升用户体验。

排名与相关性调整:

为了从召回的大量数据中精确选出最相关的结果,ES 采用如BM25等排序机制,考虑文档频率和位置等因素初步确定权重。随后,通过集成学习或更精细的模型(如Rerank阶段)对初步筛选出的文档进行二次排序,确保顶部结果高度相关。

模型集成与原生支持:

Elasticsearch 展现了强大的模型集成能力,允许用户直接将自定义模型加载至集群中运行,实现从输入到输出(如词嵌入生成)的端到端处理,无需外部预处理步骤。这不仅简化了工作流程,还促进了机器学习模型与搜索引擎的无缝融合,强化了系统的智能化水平和适应性。

04 阿里云 Elasticsearch 将准确率提升至95%

阿里云 Elasticsearch AI 搜索产品依托于强大的 Elasticsearch 基础,基于阿里云 AI 搜索开放平台,整合多样化模型与混合检索技术,实现了从传统搜索到 AI 语义搜索的跨越。该方案通过精细的数据预处理、智能向量化、多维度检索召回、以及大模型辅助生成,形成了一个完整且高效的 RAG 场景应用框架。

13.jpg

  • 文档解析与切分:利用自研模型识别非结构化数据,提取关键信息,保证内容的完整性和语义连贯性。
  • 高效向量化:采用参数量优化的向量模型,在保证效果的同时降低成本,实现向量化过程的高效执行。
  • RRF混合检索策略:结合文本、稀疏及稠密向量索引,实现多路召回,大幅提升检索精度与效率。
  • 意图理解与重排优化:通过查询分析模型理解用户意图,配合重排模型对结果进行精排序,确保内容的相关性。
  • 综合测评与灵活配置:AI搜索开放平台台提供一站式服务,包含多款模型组件,兼容开源生态,助力企业快速搭建定制化搜索系统。

通过阿里云 Elasticsearch AI 搜索的全面应用,客户在知识库问答场景中见证了显著成效,准确率从最初的48%提升至最终超过95%。此外,三路混合检索与重排模型的结合,进一步提升了检索的精确度,保障了搜索体验的卓越性。

15.jpg

05 AI Assistant 集成通义千问大模型实现 AI Ops

Elasticsearch 企业版的 AI Assistant 融合了 RAG 技术和阿里云大模型服务,为企业提供了 AI Ops 助手。这一创新工具在通用搜索、可观测性分析及安全保障等多个领域展现出了卓越的应用潜力,不仅能够助力开发者在异常监控、警报处理、问题识别与诊断、数据分析建模以及查询性能优化等方面取得显著进展,还通过更加直观易用的交互界面极大提升了工作效率。

特别是在可观测性方面,AI Assistant 借助于自动化的函数调用机制,该助手能够高效地请求、分析并可视化您的数据,将其转化为具有实际操作价值的信息。此外,基于 Elastic Learned Sparse EncodeR (ELSER) 支持的知识库进一步丰富了来自私有数据集中的上下文信息和建议;而 RAG 技术与通义大模型相结合,则确保了更精准的数据理解和表达能力。

通过阿里云 AI 搜索开放平台上集成通义千问大模型后,Elasticsearch 的 AI Assistant 特别注重激活函数模拟调用,以保证不同系统间的无缝兼容。这使得用户可以根据具体需求灵活切换多种连接器,从而实现高效的信息检索与处理流程。尤其在微服务运维场景下,AI Assistant 发挥着至关重要的作用——它不仅能实时监测异常状况与潜在故障点,还能对详细的错误日志进行深入剖析,并结合现有运维手册快速定位问题根源。与此同时,AI Assistant 还能有效整合各类告警信息,对安全攻击链条进行全面分析,进而提出切实可行的防御策略,显著提高了问题解决的速度与质量。

通过调用 API 接口并自动生成 ESQL 查询语句,AI Assistant 能够执行复杂的数据分析任务并生成直观易懂的统计图表,即使是对 Elasticsearch 查询语法不甚了解的用户也能轻松上手。无论是探究字段间的关系,还是解读数据趋势等数据洞察,AI Assistant 都能以极高的效率和便捷的操作方式满足用户的多样化需求。


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
5天前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
|
3天前
|
人工智能 供应链 安全
面向高效大模型推理的软硬协同加速技术 多元化 AI 硬件引入评测体系
本文介绍了AI硬件评测体系的三大核心方面:统一评测标准、平台化与工具化、多维度数据消费链路。通过标准化评测流程,涵盖硬件性能、模型推理和训练性能,确保评测结果客观透明。平台化实现资源管理与任务调度,支持大规模周期性评测;工具化则应对紧急场景,快速适配并生成报告。最后,多维度数据消费链路将评测数据结构化保存,服务于综合通用、特定业务及专业性能分析等场景,帮助用户更好地理解和使用AI硬件。
|
2月前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
68 5
|
3月前
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
273 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
|
4月前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
|
5月前
|
数据可视化 Docker 容器
一文教会你如何通过Docker安装elasticsearch和kibana 【详细过程+图解】
这篇文章提供了通过Docker安装Elasticsearch和Kibana的详细过程和图解,包括下载镜像、创建和启动容器、处理可能遇到的启动失败情况(如权限不足和配置文件错误)、测试Elasticsearch和Kibana的连接,以及解决空间不足的问题。文章还特别指出了配置文件中空格的重要性以及环境变量中字母大小写的问题。
一文教会你如何通过Docker安装elasticsearch和kibana 【详细过程+图解】
|
5月前
|
JSON 自然语言处理 数据库
Elasticsearch从入门到项目部署 安装 分词器 索引库操作
这篇文章详细介绍了Elasticsearch的基本概念、倒排索引原理、安装部署、IK分词器的使用,以及如何在Elasticsearch中进行索引库的CRUD操作,旨在帮助读者从入门到项目部署全面掌握Elasticsearch的使用。
|
5月前
|
Ubuntu Oracle Java
如何在 Ubuntu VPS 上安装 Elasticsearch
如何在 Ubuntu VPS 上安装 Elasticsearch
62 0
|
5月前
|
存储 Ubuntu Oracle
在Ubuntu 14.04上安装和配置Elasticsearch的方法
在Ubuntu 14.04上安装和配置Elasticsearch的方法
50 0
|
5月前
|
存储 安全 Java
在CentOS 7上安装和配置Elasticsearch的方法
在CentOS 7上安装和配置Elasticsearch的方法
361 0

相关产品

  • 检索分析服务 Elasticsearch版