从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案

01 AI搜索落地的挑战

在过去一年中,基座大模型技术的快速迭代推动了 AI 搜索的演进,主要体现在以下几个方面:

搜索技术链路重构

基于大模型的全面重构正在重塑 AI 搜索的技术链路。从数据采集、文档解析、向量检索到查询分析、意图识别、排序模型和知识图谱等各个环节,都在经历深刻变革。新的交互方式如对话式搜索、答案总结、智能客服、企业数字员工和虚拟人逐渐成为主流,不仅提升了用户体验,也为更多应用场景提供了可能。

AI 搜索作为基础设施

AI 搜索已成为各类 AI 应用的基础技术之一。作为热门的 AI 原生应用,它不仅驱动了知识类 AI 应用的发展,还逐步成为各大基础模型的内置能力。例如,向量检索、检索增强生成(RAG)和语义搜索等技术已在多个领域广泛应用。这种集成化趋势增强了 AI 搜索在不同场景下的适应性和灵活性。

效果提升面临的瓶颈

尽管 AI 搜索在效果上取得了显著进步,但幻觉问题仍是制约其广泛应用的主要因素,尤其在对知识准确性要求极高的业务场景中更为突出。此外,高成本和隐私安全可控性低也是实施过程中面临的重要挑战。


为应对这些问题,阿里云 Elasticsearch 推出了创新的 AI 搜索方案,使用 RAG 技术对检索增强生成的各个环节进行能力增强,并深度融合了企业版 AI Assistant,将 RAG 技术应用于 AIOps 领域。

02 Elasticsearch 向量性能5倍提升

Elasticsearch 向量引擎持续优化,特别是针对性能与成本的改进尤为突出。初期,由于普遍存在的认知偏差——认为 ES 向量引擎虽功能强大但在性能上可能存在短板,尤其是对于 Java 生态系统中的应用——这一观点正逐渐被其技术演进所颠覆。自8.0初始版本至已经迈入的8.15版本的历程中,Elasticsearch 不断迭代,特别是在性能优化方面取得了显著进展,其中包括但不限于对硬件加速技术的有效整合。


Elasticsearch 利用硬件加速技术在向量检索领域,尤其是处理复杂相似度计算任务时,实现了显著的性能飞跃。这种技术创新不仅限于理论层面,实践证明,通过硬件加速器的深度融合,部分计算密集型操作的效率提升了数倍乃至更多。例如,从2022年9月至今的基准测试数据可直观看出,查询响应时间从最初100ms大幅缩减至现在20ms左右,彰显了 Elasticsearch 向量检索迭代升级带来的巨大性能提升。


Elasticsearch在内存优化同样值得关注,通过向量量化技术,所需内存仅为原先需求的四分之一,极大提升了资源利用率。在最新的版本中,BBQ(Better Binary Quantization)为Elasticsearch 在量化方面带来一次飞跃,将 float32 维度缩减为位,在保持高排名质量的同时减少约 95% 的内存。BBQ 在索引速度(量化时间减少 20-30 倍)、查询速度(查询速度提高 2-5 倍)方面优于乘积量化 (Product Quantization - PQ) 等传统方法,并且不会额外损失准确性。


03 Elasticsearch 企业版 AI 能力全面解读

语义扩展与稀疏向量表示:

Elasticsearch 利用诸如稀疏编码技术,不仅能够基于原始词汇建立索引,还能有效扩展至与其相关的概念或词汇,每项扩展均附有模型计算出的权重,增强了语义理解的深度和广度。这得益于稀疏向量技术,它以较低内存占用高效存储信息,对比稠密向量需全内存索引,显著提升了资源效率。

查询效率与资源优化:

查询过程受益于倒排索引结构,避免了向量相似度匹配的开销,加速了检索速度。此外,Elasticsearch 的稀疏向量减少了内存需求,进一步优化了资源利用。

混合搜索策略:

现代搜索需求促使 Elasticsearch 支持多模态查询,结合文本、向量检索以及rrf混合排序方法,以增强结果的相关性和覆盖范围。这种混合搜索策略能够召回更多样化的数据,提升用户体验。

排名与相关性调整:

为了从召回的大量数据中精确选出最相关的结果,ES 采用如BM25等排序机制,考虑文档频率和位置等因素初步确定权重。随后,通过集成学习或更精细的模型(如Rerank阶段)对初步筛选出的文档进行二次排序,确保顶部结果高度相关。

模型集成与原生支持:

Elasticsearch 展现了强大的模型集成能力,允许用户直接将自定义模型加载至集群中运行,实现从输入到输出(如词嵌入生成)的端到端处理,无需外部预处理步骤。这不仅简化了工作流程,还促进了机器学习模型与搜索引擎的无缝融合,强化了系统的智能化水平和适应性。


04 阿里云 Elasticsearch 将准确率提升至95%

阿里云 Elasticsearch AI 搜索产品依托于强大的 Elasticsearch 基础,基于阿里云 AI 搜索开放平台,整合多样化模型与混合检索技术,实现了从传统搜索到 AI 语义搜索的跨越。该方案通过精细的数据预处理、智能向量化、多维度检索召回、以及大模型辅助生成,形成了一个完整且高效的 RAG 场景应用框架。

5eecdaf48460cde583e41f1b076ec57e6b8e31dac385ed8858e70b814913bc360a414d3de9277d871abf3af1cbd752491740334669cc8dd3030d33b2522f1af8b4b113140037143ad93f8a79ead3a5f1d54b1021e9d12dcefc653b69905bac42.jpg

  • 文档解析与切分:利用自研模型识别非结构化数据,提取关键信息,保证内容的完整性和语义连贯性。
  • 高效向量化:采用参数量优化的向量模型,在保证效果的同时降低成本,实现向量化过程的高效执行。
  • RRF混合检索策略:结合文本、稀疏及稠密向量索引,实现多路召回,大幅提升检索精度与效率。
  • 意图理解与重排优化:通过查询分析模型理解用户意图,配合重排模型对结果进行精排序,确保内容的相关性。
  • 综合测评与灵活配置:AI搜索开放平台台提供一站式服务,包含多款模型组件,兼容开源生态,助力企业快速搭建定制化搜索系统。



通过阿里云 Elasticsearch AI 搜索的全面应用,客户在知识库问答场景中见证了显著成效,准确率从最初的48%提升至最终超过95%。此外,三路混合检索与重排模型的结合,进一步提升了检索的精确度,保障了搜索体验的卓越性。

1.jpg


05 AI Assistant 集成通义千问大模型实现 AI Ops

Elasticsearch 企业版的 AI Assistant 融合了 RAG 技术和阿里云大模型服务,为企业提供了 AI Ops 助手。这一创新工具在通用搜索、可观测性分析及安全保障等多个领域展现出了卓越的应用潜力,不仅能够助力开发者在异常监控、警报处理、问题识别与诊断、数据分析建模以及查询性能优化等方面取得显著进展,还通过更加直观易用的交互界面极大提升了工作效率。


特别是在可观测性方面,AI Assistant 借助于自动化的函数调用机制,该助手能够高效地请求、分析并可视化您的数据,将其转化为具有实际操作价值的信息。此外,基于 Elastic Learned Sparse EncodeR (ELSER) 支持的知识库进一步丰富了来自私有数据集中的上下文信息和建议;而 RAG 技术与通义大模型相结合,则确保了更精准的数据理解和表达能力。


通过阿里云 AI 搜索开放平台上集成通义千问大模型后,Elasticsearch 的 AI Assistant 特别注重激活函数模拟调用,以保证不同系统间的无缝兼容。这使得用户可以根据具体需求灵活切换多种连接器,从而实现高效的信息检索与处理流程。尤其在微服务运维场景下,AI Assistant 发挥着至关重要的作用——它不仅能实时监测异常状况与潜在故障点,还能对详细的错误日志进行深入剖析,并结合现有运维手册快速定位问题根源。与此同时,AI Assistant 还能有效整合各类告警信息,对安全攻击链条进行全面分析,进而提出切实可行的防御策略,显著提高了问题解决的速度与质量。


通过调用 API 接口并自动生成 ESQL 查询语句,AI Assistant 能够执行复杂的数据分析任务并生成直观易懂的统计图表,即使是对 Elasticsearch 查询语法不甚了解的用户也能轻松上手。无论是探究字段间的关系,还是解读数据趋势等数据洞察,AI Assistant 都能以极高的效率和便捷的操作方式满足用户的多样化需求。


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
打赏
0
3
3
0
1585
分享
相关文章
阿里云《AI 剧本生成与动画创作》技术解决方案测评
本问是对《AI 剧本生成与动画创作》的用心体验。结论不是特别理想,在实际使用中仍存在一些问题。
71 22
YAYI-Ultra:中国企业终于等来『全能大脑』!开源企业级AI『混合专家』横扫金融舆情中医领域,最长生成20万字报告
YAYI-Ultra 是由中科闻歌研发的企业级大语言模型,具备强大的多领域专业能力和多模态内容生成能力,支持数学、代码、金融等多个领域的专家组合,缓解垂直领域迁移中的“跷跷板”现象。
55 10
YAYI-Ultra:中国企业终于等来『全能大脑』!开源企业级AI『混合专家』横扫金融舆情中医领域,最长生成20万字报告
OpenDeepResearcher:开源 AI 研究工具,自动完成搜索、评估、提取和生成报告
OpenDeepResearcher 是一款开源 AI 研究工具,支持异步处理、去重功能和 LLM 驱动的决策,帮助用户高效完成复杂的信息查询和分析任务。
160 18
OpenDeepResearcher:开源 AI 研究工具,自动完成搜索、评估、提取和生成报告
Elasticsearch AI Assistant 集成 DeepSeek,1分钟搭建智能运维助手
Elasticsearch 新支持 DeepSeek 系列模型,使用 AI 助手,通过自然语言交互,为可观测性分析、安全运维管理及数据智能处理提供一站式解决方案。
142 2
Elasticsearch AI Assistant 集成 DeepSeek,1分钟搭建智能运维助手
用 SAP ABAP 接入国内 AI 产品通用接口技术指南 1、调用AI接口
SAP 系统与国内先进的 AI 产品(如百度文心一言、阿里通义千问、字节跳动云雀模型、华为盘古大模型、豆包、Deepsheek 等)集成通用接口技术指南
阿里云《AI 剧本生成与动画创作》解决方案技术评测
随着人工智能技术的发展,越来越多的工具和服务被应用于内容创作领域。阿里云推出的《AI 剧本生成与动画创作》解决方案,利用函数计算 FC 构建 Web 服务,结合百炼模型服务和 ComfyUI 工具,实现了从故事剧本撰写、插图设计、声音合成和字幕添加到视频合成的一站式自动化流程。本文将对该方案进行全面的技术评测,包括实现原理及架构介绍、部署文档指引、具体耗时分析以及实际使用体验。
90 16
Lindorm作为AI搜索基础设施,助力Kimi智能助手升级搜索体验
月之暗面旗下的Kimi智能助手在PC网页、手机APP、小程序等全平台的月度活跃用户已超过3600万。Kimi发布一年多以来不断进化,在搜索场景推出的探索版引入了搜索意图增强、信源分析和链式思考等三大推理能力,可以帮助用户解决更复杂的搜索、调研问题。 Lindorm作为一站式数据平台,覆盖数据处理全链路,集成了离线批处理、在线分析、AI推理、融合检索(正排、倒排、全文、向量......)等多项服务,支持Kimi快速构建AI搜索基础设施,显著提升检索效果,并有效应对业务快速发展带来的数据规模膨胀和成本增长。
DeepSeek逆天,核心是 知识蒸馏(Knowledge Distillation, KD),一项 AI 领域的关键技术
尼恩架构团队推出《LLM大模型学习圣经》系列,涵盖从Python开发环境搭建到精通Transformer、LangChain、RAG架构等核心技术,帮助读者掌握大模型应用开发。该系列由资深架构师尼恩指导,曾助力多位学员获得一线互联网企业的高薪offer,如网易的年薪80W大模型架构师职位。配套视频将于2025年5月前发布,助你成为多栖超级架构师。此外,尼恩还提供了NIO、Docker、K8S等多个技术领域的学习圣经PDF,欢迎领取完整版资源。
谷歌发布双思维AI Agent:像人类一样思考,重大技术突破!
谷歌近日推出基于“快慢思维”理论的双思维AI Agent系统,模仿人类大脑的两种思维模式:快速直观的Talker(系统1)和深思熟虑的Reasoner(系统2)。Talker负责日常对话与快速响应,Reasoner则处理复杂推理任务。该系统模块化设计,灵活高效,已在睡眠教练等场景中展现应用潜力,但仍面临工作负载平衡与推理准确性等挑战。论文详情见:https://arxiv.org/abs/2410.08328v1
44 1
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
111 5

热门文章

最新文章

相关产品

  • 检索分析服务 Elasticsearch版