Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性

本文涉及的产品
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频资源包5000点
简介: Meta Motivo 是 Meta 公司推出的 AI 模型,旨在控制数字智能体的全身动作,提升元宇宙体验的真实性。该模型通过无监督强化学习算法,能够实现零样本学习、行为模仿与生成、多任务泛化等功能,适用于机器人控制、虚拟助手、游戏角色动画等多个应用场景。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:Meta Motivo 能够实现零样本学习、行为模仿与生成、多任务泛化等功能。
  2. 技术:基于前向-后向表示、条件策略正则化等技术,模型能够在无监督环境下进行高效学习。
  3. 应用:适用于机器人控制、虚拟助手、游戏角色动画等多个领域,提升交互体验的真实性。

正文(附运行示例)

Meta Motivo 是什么

公众号: 蚝油菜花 - metamotivo

Meta Motivo 是 Meta 公司推出的一款 AI 模型,旨在提升元宇宙体验的真实性。该模型通过控制虚拟人形智能体的全身动作,模拟人类行为,增强用户互动。Meta Motivo 采用无监督强化学习算法,特别是 FB-CPR 算法,利用大量动作数据进行预训练,无需额外训练即可执行动作轨迹跟踪、姿势到达等多种任务。

Meta Motivo 的核心优势在于其学习表示技术,能够将状态、动作和奖励映射到同一潜在空间,从而实现对复杂行为的统一表示,提升元宇宙体验的逼真度和自然感。

Meta Motivo 的主要功能

  • 零样本学习:Meta Motivo 能够在没有针对特定任务进行训练的情况下,直接处理多种不同的任务,如运动跟踪、目标达成和奖励优化。
  • 行为模仿与生成:基于学习未标记的行为数据集,Meta Motivo 能够模仿和生成类似人类的行为。
  • 多任务泛化:在不同的任务和环境中展现良好的性能,包括动态和静态的姿势,及不同的运动模式。
  • 状态、动作和奖励的统一表示:Meta Motivo 将状态、动作和奖励映射到同一潜在空间,实现对复杂行为的统一表示。

Meta Motivo 的技术原理

  • 前向-后向表示:基于前向-后向表示学习低秩近似的后继者度量,支持模型在没有进一步训练的情况下,对任何奖励函数进行零样本策略评估和优化。
  • 条件策略正则化:通过潜在条件判别器,Meta Motivo 鼓励策略“覆盖”未标记行为数据集中的状态,让学习到的策略与数据集中的行为保持一致。
  • 潜在空间的分布匹配:基于最小化模型诱导的分布与未标记数据集之间的差异,正则化策略学习过程。
  • 在线训练与策略学习:Meta Motivo 基于在线训练,将环境交互与模型更新交替进行,让策略学习过程更加高效和目标导向。
  • 变分表示和判别器网络:通过变分表示估计 Jensen-Shannon 散度,用训练判别器网络近似两个分布之间的对数比率,有助于模型捕捉和模仿未标记数据集中的行为。

如何运行 Meta Motivo

安装

首先,通过 pip 安装 Meta Motivo:

pip install "metamotivo[huggingface,humenv] @ git+https://github.com/facebookresearch/metamotivo.git"
AI 代码解读

下载预训练模型

以下代码展示了如何实例化模型:

from metamotivo.fb_cpr.huggingface import FBcprModel

model = FBcprModel.from_pretrained("facebook/metamotivo-S-1")
AI 代码解读

执行策略

这是一个最小的示例,展示了如何执行随机策略:

from humenv import make_humenv
from gymnasium.wrappers import FlattenObservation, TransformObservation
import torch
from metamotivo.fb_cpr.huggingface import FBcprModel

device = "cpu"
env, _ = make_humenv(
    num_envs=1,
    wrappers=[
        FlattenObservation,
        lambda env: TransformObservation(
            env, lambda obs: torch.tensor(obs.reshape(1, -1), dtype=torch.float32, device=device)
        ),
    ],
    state_init="Default",
)

model = FBcprModel.from_pretrained("facebook/metamotivo-S-1")
model.to(device)
z = model.sample_z(1)
observation, _ = env.reset()
for i in range(10):
    action = model.act(observation, z, mean=True)
    observation, reward, terminated, truncated, info = env.step(action.cpu().numpy().ravel())
AI 代码解读

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

目录
打赏
0
4
4
0
226
分享
相关文章
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
Smolagents 是 Hugging Face 推出的轻量级开源库,旨在简化智能代理的构建过程,支持多种大语言模型集成和代码执行代理功能。
267 69
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%
Seer是由上海AI实验室与北大等机构联合推出的端到端操作模型,结合视觉预测与动作执行,显著提升机器人任务成功率。
60 20
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%
1000多个智能体组成,AI社会模拟器MATRIX-Gen助力大模型自我进化
在人工智能领域,大型语言模型(LLMs)的发展迅速,但如何提升其指令遵循能力仍是一大挑战。论文提出MATRIX-Gen,一个基于多智能体模拟的AI社会模拟器。MATRIX-Gen通过模拟智能体交互生成多样化的现实场景,不依赖预定义模板,从而合成高质量指令数据。它包括MATRIX模拟器和MATRIX-Gen指令生成器,能生成监督微调、偏好微调及特定领域的数据集。实验表明,使用MATRIX-Gen合成的数据集微调后的模型在多个基准测试中表现出色,显著优于现有方法。然而,该方法也面临智能体和场景规模对数据质量的影响等挑战。
58 33
MMedAgent:专为医疗领域设计的多模态 AI 智能体,支持医学影像处理、报告生成等多种医疗任务
MMedAgent 是专为医疗领域设计的多模态AI智能体,支持多种医疗任务,包括医学影像处理、报告生成等,性能优于现有开源方法。
112 19
MMedAgent:专为医疗领域设计的多模态 AI 智能体,支持医学影像处理、报告生成等多种医疗任务
Aria-UI:港大联合 Rhymes AI 开源面向 GUI 智能交互的多模态模型,整合动作历史信息实现更加准确的定位
Aria-UI 是香港大学与 Rhymes AI 联合开发的多模态模型,专为 GUI 智能交互设计,支持高分辨率图像处理,适用于自动化测试、用户交互辅助等场景。
92 11
Aria-UI:港大联合 Rhymes AI 开源面向 GUI 智能交互的多模态模型,整合动作历史信息实现更加准确的定位
AI智能体再进化,工作流怎么玩?阿里云百炼上手教程
本次分享由讲师林粒粒呀介绍如何快速制作AI智能工具,特别是利用阿里云百炼平台创建工作流。通过简单的拖拽操作,小白用户也能轻松上手,实现从PPT主题到大纲的自动生成,并能一次性生成多个版本。借助API和Python脚本,还可以将Markdown格式的大纲转换为本地PPT文件。整个流程展示了AI智能体在实际应用中的高效性和实用性,帮助用户大幅提升工作效率。
103 31
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题
《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566
37 13
PC Agent:开源 AI 电脑智能体,自动收集人机交互数据,模拟认知过程实现办公自动化
PC Agent 是上海交通大学与 GAIR 实验室联合推出的智能 AI 系统,能够模拟人类认知过程,自动化执行复杂的数字任务,如组织研究材料、起草报告等,展现了卓越的数据效率和实际应用潜力。
175 1
PC Agent:开源 AI 电脑智能体,自动收集人机交互数据,模拟认知过程实现办公自动化
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
Leffa 是 Meta 开源的图像生成框架,通过引入流场学习在注意力机制中精确控制人物的外观和姿势。该框架不增加额外参数和推理成本,适用于多种扩散模型,展现了良好的模型无关性和泛化能力。
88 11
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
与 AI 智能体来一场“春节互动”
快来报名创建AI智能体,进行实时视频互动,讨论春节习俗如吃饺子、放鞭炮等。访问活动页面,按步骤部署并上传截图,即可获得限量蛇年抱枕,先到先得!活动时间:即日起至2025年2月14日16:00。
395 2

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等