Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%

本文涉及的产品
图像搜索,任选一个服务类型 1个月
简介: Seer是由上海AI实验室与北大等机构联合推出的端到端操作模型,结合视觉预测与动作执行,显著提升机器人任务成功率。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:Seer 结合视觉预测与动作执行,显著提升机器人任务成功率。
  2. 技术:基于 Transformer 架构,融合多模态数据,实现高效的动作预测与视觉预测。
  3. 应用:广泛应用于工业自动化、服务机器人、医疗健康等领域。

正文(附运行示例)

Seer 是什么

seer

Seer 是由上海 AI 实验室、北京大学计算机科学与技术学院、北京大学软件与微电子学院等机构联合推出的端到端操作模型。该模型通过结合历史信息和目标信号(如语言指令),预测未来时刻的状态,并利用逆动力学模型生成动作信号。

Seer 基于 Transformer 架构,能够处理多模态输入数据,有效融合视觉、语言和机器人本体信号。在真实机器人任务中,Seer 的操作成功率较当前 Sota 提升 43%,且在多种复杂场景下表现出优异的泛化能力。在控制算法测试基准 CALVIN ABC-D Benchmark 中,Seer 的平均任务完成长度达 4.28,综合领先同类模型。

Seer 的主要功能

  • 动作预测:根据当前的视觉状态和目标,预测出合适的机器人动作。基于逆动力学模型估计实现目标所需的中间动作序列。
  • 视觉预测:Seer 具备条件视觉预测功能,能预测未来一定时间步内的 RGB 图像,让机器人“预见”未来的视觉状态,更好地规划和调整动作。
  • 多模态融合:融合视觉、语言和机器人状态等多种模态的信息,实现对复杂任务的理解和执行。基于多模态编码器将不同模态的特征进行整合,为动作预测和视觉预测提供全面的上下文信息。
  • 泛化能力:经过在大规模机器人数据集上的预训练,Seer 展现出强大的泛化能力,在未见场景、新物体、不同光照条件下以及面对高强度干扰时,依然保持稳定的性能。
  • 数据效率:Seer 在预训练阶段用大量数据学习到丰富的先验知识,因此在下游任务中仅需要少量的微调数据即可达到较好的性能,降低数据采集和标注的成本。

Seer 的技术原理

  • 端到端架构:基于端到端的架构设计,将视觉预测和逆动力学预测紧密结合在一起。在训练过程中,视觉预测模块和逆动力学模块协同优化,让模型能充分利用视觉和动作信息,实现更准确的动作预测。
  • Transformer 架构:基于 Transformer 架构处理视觉状态和动作信息。Transformer 能捕捉到视觉和动作序列中的复杂依赖关系,为模型提供强大的特征提取和表示能力。
  • 先见令牌和动作令牌:Seer 引入先见令牌(foresight token)和动作令牌(action token)。先见令牌预测未来的 RGB 图像,动作令牌估计当前和预测未来观察之间的中间动作。两个令牌基于多模态编码器与输入的 RGB 图像、机器人状态和语言令牌进行融合,用单向注意力掩码实现深度的信息整合。
  • 单向注意力掩码:Seer 设计特殊的单向注意力掩码,让动作令牌充分整合过去和未来的预测信息,有助于模型在多层网络中实现更深层次的信息融合,提高动作预测的准确性和鲁棒性。
  • 大规模预训练与微调:Seer 首先在大规模机器人数据集(如 DROID)上进行预训练,学习到丰富的视觉和动作先验知识。在下游任务中,基于少量的微调数据对模型进行调整,适应具体的任务场景和目标。

如何运行 Seer

仿真环境运行

CALVIN ABC-D

  1. 安装:按照 CALVIN ABC-D 安装指南 进行环境配置。
  2. 运行代码:根据 CALVIN ABC-D 运行指南 运行仿真代码。

真实世界实验

快速训练(有/无预训练)

  1. 安装:按照 真实世界安装指南 进行环境配置。
  2. 后处理:根据 真实世界后处理指南 进行数据后处理。
  3. 微调与从头训练:按照 真实世界微调与从头训练指南 进行模型训练。
  4. 推理:根据 真实世界推理指南 进行模型推理。

预训练

  1. 安装:按照 真实世界安装指南 进行环境配置。
  2. 预处理:根据 真实世界预处理指南 进行数据预处理。
  3. 预训练:按照 真实世界预训练指南 进行模型预训练。

资源

CALVIN ABC-D

真实世界实验

快速训练(有/无预训练)

预训练


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

目录
打赏
0
19
20
0
407
分享
相关文章
|
2月前
|
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1166 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
230 120
产品经理也能“开发”需求?淘宝信息流从需求到上线的AI端到端实践
淘宝推荐信息流业务,常年被“需求多、技术栈杂、协作慢”困扰,需求上线周期动辄一周。WaterFlow——一套 AI 驱动的端到端开发新实践,让部分需求两天内上线,甚至产品经理也能“自产自销”需求。短短数月,已落地 30+ 需求、自动生成 5.4 万行代码,大幅提升研发效率。接下来,我们将揭秘它是如何落地并改变协作模式的。
309 37
产品经理也能“开发”需求?淘宝信息流从需求到上线的AI端到端实践
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
333 29
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
373 23
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
694 33
3个月圈粉百万,这个AI应用在海外火了
不知道大家还记不记得,我之前推荐过一个叫 Agnes 的 AI 应用,也是当时在 WAIC 了解到的。
254 1
构建企业级 AI 应用:为什么我们需要 AI 中间件?
阿里云发布AI中间件,涵盖AgentScope-Java、AI MQ、Higress、Nacos及可观测体系,全面开源核心技术,助力企业构建分布式多Agent架构,推动AI原生应用规模化落地。
180 0
构建企业级 AI 应用:为什么我们需要 AI 中间件?

热门文章

最新文章

AI助理
登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问

你好,我是AI助理

可以解答问题、推荐解决方案等