Aria-UI:港大联合 Rhymes AI 开源面向 GUI 智能交互的多模态模型,整合动作历史信息实现更加准确的定位

本文涉及的产品
图像搜索,7款服务类型 1个月
简介: Aria-UI 是香港大学与 Rhymes AI 联合开发的多模态模型,专为 GUI 智能交互设计,支持高分辨率图像处理,适用于自动化测试、用户交互辅助等场景。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:Aria-UI 支持 GUI 元素定位、多模态输入处理、高分辨率图像处理等功能。
  2. 技术:基于纯视觉方法和多模态 MoE 模型,Aria-UI 能够处理多样化指令和动态上下文。
  3. 应用:适用于自动化测试、用户交互辅助、智能客服等多个场景。

正文(附运行示例)

Aria-UI 是什么

Aria-UI

Aria-UI 是香港大学与 Rhymes AI 联合推出的多模态模型,专为图形用户界面(GUI)定位任务设计。它采用纯视觉方法,不依赖于 HTML 或 AXTree 等辅助输入,通过大规模、多样化的数据合成流程,生成高质量的元素描述和指令样本,适应不同环境下的多样化指令。

Aria-UI 创新性地整合了动态动作历史信息,使用文本或文本-图像交错格式增强模型在多步任务场景中的定位能力。在包括离线和在线代理任务的广泛基准测试中,Aria-UI 均取得优异的性能,展现出强大的零样本泛化能力和跨平台适用性,成为通用 GUI 定位任务的有力解决方案。

Aria-UI 的主要功能

  • GUI 元素定位:将语言指令准确地映射到 GUI 中的目标元素,实现元素的精确定位,为后续的交互操作提供基础。
  • 多模态输入处理:处理包括 GUI 图像、文本指令、动作历史等多种模态的输入信息,充分理解和利用多模态数据中的丰富信息。
  • 多样化指令适应:基于大规模、多样化的数据合成流程生成的多样化指令样本,有效适应不同环境下的各种指令表达方式。
  • 动态上下文理解:整合动态动作历史信息,用文本或文本-图像交错格式,在多步任务场景中理解当前的动态上下文,为准确的元素定位提供重要参考。
  • 高分辨率图像处理:支持高达 3920×2940 的图像分辨率,将图像分割成小块处理,显著扩展可处理的图像尺寸范围。

Aria-UI 的技术原理

  • 纯视觉方法:采用纯视觉方法,直接从 GUI 图像中提取视觉特征,用视觉信息理解和定位目标元素。
  • 多模态 MoE 模型:基于 Aria 多模态 MoE(Mixture of Experts)模型构建,具有 3.9B 激活参数,擅长处理多模态数据。
  • 数据合成与训练:基于两阶段的数据合成流程,从 Common Crawl 和公开数据中生成高质量的元素描述和多样化指令样本,覆盖 Web、桌面和移动三大 GUI 环境,为模型训练提供大量、多样化的训练数据,增强模型对不同指令和元素的识别能力。
  • 上下文感知数据扩展:用公开的代理轨迹数据模拟具有上下文的定位任务,构建文本动作历史和文本-图像交错历史两种上下文设置,基于数据合成流程为轨迹数据中的所有定位步骤生成详细的逐步指令,让模型在动态环境中更好地理解和执行任务。
  • 超分辨率支持:将图像分割成小块并进行处理,支持高达 3920×2940 的图像分辨率,保持图像的细节和准确性。

如何运行 Aria-UI

1. 安装依赖

首先,安装所需的依赖包:

pip install transformers==4.45.0 accelerate==0.34.1 sentencepiece==0.2.0 torchvision requests torch Pillow
pip install flash-attn --no-build-isolation
# 为了更好的推理性能,可以安装 grouped-gemm,安装可能需要 3-5 分钟
pip install grouped_gemm==0.1.6

2. 使用 vllm 进行推理(推荐)

确保安装了最新版本的 vLLM,以便支持 Aria-UI:

pip install https://vllm-wheels.s3.us-west-2.amazonaws.com/nightly/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl

以下是一个使用 Aria-UI 和 vllm 的代码示例:

from PIL import Image, ImageDraw
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
import ast

model_path = "Aria-UI/Aria-UI-base"

def main():
    llm = LLM(
        model=model_path,
        tokenizer_mode="slow",
        dtype="bfloat16",
        trust_remote_code=True,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_path, trust_remote_code=True, use_fast=False
    )
    instruction = "Try Aria."
    messages = [
        {
   
            "role": "user",
            "content": [
                {
   "type": "image"},
                {
   
                    "type": "text",
                    "text": "Given a GUI image, what are the relative (0-1000) pixel point coordinates for the element corresponding to the following instruction or description: " + instruction,
                }
            ],
        }
    ]
    message = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
    outputs = llm.generate(
        {
   
            "prompt_token_ids": message,
            "multi_modal_data": {
   
                "image": [
                    Image.open("examples/aria.png"),
                ],
                "max_image_size": 980,  # [Optional] The max image patch size, default `980`
                "split_image": True,  # [Optional] whether to split the images, default `True`
            },
        },
        sampling_params=SamplingParams(max_tokens=50, top_k=1, stop=["<|im_end|>"]),
    )
    for o in outputs:
        generated_tokens = o.outputs[0].token_ids
        response = tokenizer.decode(generated_tokens, skip_special_tokens=True)
        print(response)
        coords = ast.literal_eval(response.replace("<|im_end|>", "").replace("```", "").replace(" ", "").strip())
        return coords

if __name__ == "__main__":
    main()

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
1天前
|
人工智能 自然语言处理 API
用自然语言控制电脑,字节跳动开源 UI-TARS 的桌面版应用!内附详细的安装和配置教程
UI-TARS Desktop 是一款基于视觉语言模型的 GUI 代理应用,支持通过自然语言控制电脑操作,提供跨平台支持、实时反馈和精准的鼠标键盘控制。
78 17
用自然语言控制电脑,字节跳动开源 UI-TARS 的桌面版应用!内附详细的安装和配置教程
|
1天前
|
人工智能 自然语言处理 API
UI-TARS:字节跳动开源专注于多平台 GUI 自动化交互的视觉语言模型
UI-TARS 是字节跳动推出的新一代原生图形用户界面(GUI)代理模型,支持跨平台自动化交互,具备强大的感知、推理、行动和记忆能力,能够通过自然语言指令完成复杂任务。
47 16
UI-TARS:字节跳动开源专注于多平台 GUI 自动化交互的视觉语言模型
|
6天前
|
Web App开发 机器学习/深度学习 人工智能
Weebo:支持多语言和实时语音交流的开源 AI 聊天机器人,回复具备语调、情感的语音
Weebo 是一款基于 Whisper Small、Llama 3.2 和 Kokoro-82M 技术的 AI 语音聊天机器人,支持实时语音交互和多语言对话,适用于个人助理、娱乐互动和教育辅导等多种场景。
90 17
Weebo:支持多语言和实时语音交流的开源 AI 聊天机器人,回复具备语调、情感的语音
|
3天前
|
存储 人工智能 自然语言处理
OmniThink:浙大联合阿里通义开源 AI 写作框架,基于深度思考扩展知识边界,实时展示思考过程
OmniThink 是浙江大学与阿里通义实验室联合开发的机器写作框架,通过模拟人类迭代扩展和反思过程,生成高质量长篇文章,显著提升知识密度和内容深度。
52 12
OmniThink:浙大联合阿里通义开源 AI 写作框架,基于深度思考扩展知识边界,实时展示思考过程
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
VideoWorld:字节开源自回归视频生成模型,支持输入视频指导AI生成视频!弥补文本生成视频的短板
VideoWorld 是由字节跳动、北京交通大学和中国科学技术大学联合推出的自回归视频生成模型,能够从未标注的视频数据中学习复杂知识,支持长期推理和规划任务。
51 8
VideoWorld:字节开源自回归视频生成模型,支持输入视频指导AI生成视频!弥补文本生成视频的短板
|
3天前
|
机器学习/深度学习 人工智能 vr&ar
Roop-Unleashed:开源 AI 换脸神器!支持批量、VR、直播实时换脸
Roop-Unleashed 是一款基于 Roop 的开源 AI 换脸工具,支持批量处理、VR 换脸和直播换脸,提供简单易用的图形界面,适用于多种场景。
52 5
Roop-Unleashed:开源 AI 换脸神器!支持批量、VR、直播实时换脸
|
3天前
|
人工智能 自然语言处理 API
百聆:集成Deepseek API及语音技术的开源AI语音对话助手,实时交互延迟低至800ms
百聆是一款开源的AI语音对话助手,结合ASR、VAD、LLM和TTS技术,提供低延迟、高质量的语音对话体验,适用于边缘设备和低资源环境。
73 4
百聆:集成Deepseek API及语音技术的开源AI语音对话助手,实时交互延迟低至800ms
|
3天前
|
人工智能 自然语言处理 搜索推荐
GLM-Realtime:智谱推出多模态交互AI模型,融入清唱功能,支持视频和语音交互
GLM-Realtime 是智谱推出的端到端多模态模型,具备低延迟的视频理解与语音交互能力,支持清唱功能、2分钟内容记忆及灵活调用外部工具,适用于多种智能场景。
37 4
GLM-Realtime:智谱推出多模态交互AI模型,融入清唱功能,支持视频和语音交互
|
1天前
|
人工智能 测试技术 Python
VideoChat-Flash:上海AI Lab开源高效处理超长视频的多模态大模型
VideoChat-Flash 是上海人工智能实验室等机构推出的多模态大模型,通过分层压缩技术高效处理长视频,支持长达数小时的视频输入,推理速度提升5-10倍。
26 1
VideoChat-Flash:上海AI Lab开源高效处理超长视频的多模态大模型
|
3天前
|
人工智能 Serverless API
AI时代下的数据信息提取 | 多模态数据信息提取
多模态数据信息提取方案利用先进的大模型技术,支持文本、图像、音频和视频等多种格式文件的信息抽取。该方案通过函数计算FC构建Web服务,接收用户请求并调用视觉和文本模型进行处理,最终返回结果。部署过程简单易上手,适合新手操作,且提供详细的文档和截图指导。用户可通过在线WebUI或API接口实现信息提取,满足不同场景需求。此外,该方案支持批处理模式下的离线作业,大幅提高大规模数据处理效率,降低业务落地成本达50%。

热门文章

最新文章