Seaborn可视化学习笔记(一):可视化神经网络权重分布情况

简介: 这篇文章是关于如何使用Seaborn库来可视化神经网络权重分布的教程,包括函数信息、测试代码和实际应用示例。

函数信息

#displot参数如下
sns.distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None, hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None, color=None, vertical=False, norm_hist=False, axlabel=None, label=None, ax=None)
  • hist: 控制是否显示条形图,默认为True
  • kde: 控制是否显示核密度估计图,默认为True
  • rug: 控制是否显示观测的小细条(边际毛毯)默认为false
  • fit: 设定函数图像,与原图进行比较
  • axlabel: 设置x轴的label
  • label : 没有发现什么作yong.
  • ax: 图片位置

测试

import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt

x = np.random.normal(size=100)
sns.distplot(x, color='y')
plt.show()

在这里插入图片描述
纵坐标代表数值分布概率,横坐标代表数值的具体情况

实际应用

这里假设输入为四维的tensor,然后通过卷积之后就可以获得卷积后的权重,然后在通过激活函数LeakyReLU,就可以观察激活前后的权重分布情况。


import torch
import torch.nn as nn
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt

a = torch.randn(1,3,224,224)
conv1 = nn.Sequential(
            nn.Conv2d(3, 16, 3, 2, 1, bias=False),
            nn.BatchNorm2d(16)
        )
b = conv1(a)
LK = nn.LeakyReLU(negative_slope=0.1, inplace=False)
c = LK(b)
b_1=b.detach().numpy().flatten() # (200704,)
c_1=c.detach().numpy().flatten()

#直方图
fig = plt.figure()
sns.set_style("darkgrid")

sns.distplot(b_1, color='y')
plt.show()

fig1 = plt.figure()
sns.distplot(c_1, color='r')
plt.show()

在这里插入图片描述
在这里插入图片描述
python数据可视化之Seaborn(三):分布可视化
Seaborn.distplot的Y轴意味着什么?

目录
相关文章
|
1月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
56 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
1月前
|
Ubuntu 网络安全 图形学
Ubuntu学习笔记(二):ubuntu20.04解决右上角网络图标激活失败或者消失,无法连接有线问题。
在Ubuntu 20.04系统中解决网络图标消失和无法连接有线网络问题的方法,其中第三种方法通过检查并确保Windows防火墙中相关服务开启后成功恢复了网络连接。
434 0
Ubuntu学习笔记(二):ubuntu20.04解决右上角网络图标激活失败或者消失,无法连接有线问题。
|
1月前
|
机器学习/深度学习 数据可视化 Windows
深度学习笔记(七):如何用Mxnet来将神经网络可视化
这篇文章介绍了如何使用Mxnet框架来实现神经网络的可视化,包括环境依赖的安装、具体的代码实现以及运行结果的展示。
50 0
|
3月前
|
移动开发 TensorFlow 算法框架/工具
只保存和加载网络权重
【8月更文挑战第21天】只保存和加载网络权重。
33 2
|
3月前
|
数据可视化 算法 C++
脑研究、脑网络分析、可视化的工具箱有哪些?
本文列举并简要介绍了用于脑研究、脑网络分析和可视化的多种工具箱,如Brain Connectivity Toolbox、bctpy、人类连接组项目等,为神经科学研究者提供了丰富的分析和可视化大脑网络的工具选择。
192 2
脑研究、脑网络分析、可视化的工具箱有哪些?
|
3月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
55 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
|
3月前
|
数据采集 存储 数据可视化
基于Python 网络爬虫和可视化的房源信息的设计与实现
本文介绍了一个基于Python Scrapy框架和echart库的房源信息采集与可视化系统,该系统通过自动化爬虫提高房地产数据采集效率,并通过Flask服务器实现数据的Web可视化展示,旨在帮助房地产从业人员和政策制定者高效、直观地了解房源信息。
|
3月前
|
机器学习/深度学习 自然语言处理 并行计算
【深度学习+面经】Transformer 网络学习笔记
Transformer模型的核心概念、优缺点以及在多个领域的应用,并提供了针对Transformer架构的面试问题及答案。
156 2
|
3月前
|
机器学习/深度学习
神经网络中权重初始化的重要性
【8月更文挑战第23天】
119 0
|
3月前
|
Prometheus 监控 Cloud Native
在Linux中,如何使用Grafana和Prometheus进行网络监控和可视化?
在Linux中,如何使用Grafana和Prometheus进行网络监控和可视化?