【python】python饮料销售数据分析可视化(源码+数据集)【独一无二】

简介: 【python】python饮料销售数据分析可视化(源码+数据集)【独一无二】

一、设计要求

金牛食品有限公司位于金牛街100号,是一家批发销售软饮料的公司。批发销售软饮料行业市场潜力三大,行业增速不断上升,市场竞争异常激烈。文件wal1.xlsx’中有两个sheet,分别存放2021年销售明细和利润表,读取并分析其中数据,做可视化呈现。要求:


  • ①找出销售收入前15的品牌;
  • ②按月汇总,求出每月的毛利及毛利率;
  • ③通过利润表,分析该公司的盈利结构,


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 饮料销售数据分析 ” 获取。👈👈👈

数据如下:

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 饮料销售数据分析 ” 获取。👈👈👈


二、可视化展示

通过对销售数据的分组和排序,您得出了销售收入前15的品牌(或商品名称)。这显示了这些品牌在市场上的表现和销售优势。这些信息有助于理解哪些产品更受消费者欢迎,也可能指导库存管理和市场推广策略。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 饮料销售数据分析 ” 获取。👈👈👈


通过转置和重命名,整理了利润数据,计算出每月的毛利和毛利率。这些数据展示了公司每月的盈利性表现。毛利和毛利率是评估公司运营效率的重要指标,有助于管理层监控成本控制和定价策略的效果。


通过饼图,展示了公司一年的盈利结构,包括各项费用和收入的比例。这有助于理解公司的财务健康状况,识别成本和收入中的主要组成部分,以及可能的调整点,以改善利润率。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 饮料销售数据分析 ” 获取。👈👈👈


三、代码分析

这段代码主要用于处理和可视化销售和利润数据,分别完成三个具体任务。下面详细解释每个部分的功能:

1. 导入模块和设置

import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']


  • 导入pandas库,用于数据处理。
  • 导入matplotlib.pyplot库,用于数据可视化。
  • 设置matplotlib的字体参数为SimHei,以便在图表中显示中文。


2. 读取数据

sales_data = pd.read_excel('cwal1.xlsx', sheet_name='销售明细表')
profit_data = pd.read_excel('cwal1.xlsx', sheet_name='利润表')


  • cwal1.xlsx文件中读取两个工作表:销售明细表利润表,分别加载到sales_dataprofit_data变量中。


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 饮料销售数据分析 ” 获取。👈👈👈


3. 任务1:销售收入前15的品牌

top_brands.plot(kind='bar', color='skyblue', title='销售收入前15的品牌')
# 略......
# 略......
# 略......
plt.xlabel('品牌(商品名称)')
plt.ylabel('总销售收入')


  • 使用groupby按照商品名称进行分组,然后对收入合计列进行求和。
  • 从结果中选出销售收入最高的前15个品牌。
  • 利用条形图显示这15个品牌的销售收入,调整横坐标标签角度以提高可读性。


4. 任务2:每月毛利及毛利率

df = profit_data.T
# 略......
# 略......
# 略......

df['毛利'] = df['一、营业收入'] - df['   减:营业成本']
df['毛利率'] = df['毛利'] / df['一、营业收入']

fig, ax1 = plt.subplots()
color = 'tab:red'
ax1.set_xlabel('月份')

ax2 = ax1.twinx()
ax2.plot(df['月份'], df['毛利率'], color=color)
ax2.tick_params(axis='y', labelcolor=color)

plt.title('每月毛利及毛利率')
plt.show()


  • 转置利润表,以月份为行,利润表各项为列。
  • 重新设置表头并重置索引,确保月份作为一列存在。
  • 计算毛利(营业收入减去营业成本)和毛利率。
  • 使用柱状图和曲线图在同一图表上显示每月的毛利和毛利率。


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 饮料销售数据分析 ” 获取。👈👈👈


5. 任务3:年度盈利结构分析

annual_data = df[df['月份'] == '本年合计']
categories = annual_data.columns[2:]  # 调整索引以适应具体的列结构
values = annual_data.iloc[0, 2:].values  # 获取第一行(即本年合计行),从第三列开始的数据

fig, ax = plt.subplots()
ax.pie(values, labels=categories, autopct='%1.1f%%', startangle=90)
ax.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle.
plt.title('金牛食品有限公司2021年盈利结构分析')
plt.show()


  • 筛选出汇总为"本年合计"的行数据。
  • 提取除了月份项目之外的列名和数据。
  • 使用饼图展示金牛食品有限公司2021年的盈利结构,每项盈利的比例显示在图表上。


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 饮料销售数据分析 ” 获取。👈👈👈

相关文章
|
19天前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
80 7
|
28天前
|
JSON 开发工具 git
基于Python和pygame的植物大战僵尸游戏设计源码
本项目是基于Python和pygame开发的植物大战僵尸游戏,包含125个文件,如PNG图像、Python源码等,提供丰富的游戏开发学习素材。游戏设计源码可从提供的链接下载。关键词:Python游戏开发、pygame、植物大战僵尸、源码分享。
|
1月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
1月前
|
数据可视化 搜索推荐 Shell
Python与Plotly:B站每周必看榜单的可视化解决方案
Python与Plotly:B站每周必看榜单的可视化解决方案
|
3月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
60 1
|
3月前
|
机器学习/深度学习 数据可视化 数据挖掘
数据可视化大不同!Python数据分析与机器学习中的Matplotlib、Seaborn应用新视角!
在数据科学与机器学习领域,数据可视化是理解数据和优化模型的关键。Python凭借其强大的可视化库Matplotlib和Seaborn成为首选语言。本文通过分析一份包含房屋面积、卧室数量等特征及售价的数据集,展示了如何使用Matplotlib绘制散点图,揭示房屋面积与售价的正相关关系;并利用Seaborn的pairplot探索多变量间的关系。在机器学习建模阶段,通过随机森林模型展示特征重要性的可视化,帮助优化模型。这两个库在数据分析与建模中展现出广泛的应用价值。
57 2
|
3月前
|
数据可视化 数据挖掘 Python
逆袭之路!Python数据分析新手如何快速掌握Matplotlib、Seaborn,让数据说话更响亮?
在数据驱动时代,掌握数据分析技能至关重要。对于Python新手而言,Matplotlib和Seaborn是数据可视化的两大利器。Matplotlib是最基本的可视化库,适合绘制基础图表;Seaborn则提供高层次接口,专注于统计图形和美观样式。建议先学Matplotlib再过渡到Seaborn。快速上手Matplotlib需多实践,示例代码展示了绘制折线图的方法。Seaborn特色功能包括分布图、关系图及分类数据可视化,并提供多种主题和颜色方案。两者结合可实现复杂数据可视化,先用Seaborn绘制统计图,再用Matplotlib进行细节调整。熟练掌握这两者,将显著提升你的数据分析能力。
52 4
|
3月前
|
数据可视化 数据挖掘 Python
惊呆了!Python数据分析师如何用Matplotlib、Seaborn秒变数据可视化大师?
在数据驱动时代,分析师们像侦探一样在数字海洋中寻找线索,揭示隐藏的故事。数据可视化则是他们的“魔法棒”,将复杂数据转化为直观图形。本文将带你探索Python数据分析师如何利用Matplotlib与Seaborn这两大神器,成为数据可视化大师。Matplotlib提供基础绘图功能,而Seaborn在此基础上增强了统计图表的绘制能力,两者结合使数据呈现更高效、美观。无论是折线图还是箱形图,这两个库都能助你一臂之力。
49 4
|
4月前
|
数据可视化 数据挖掘 API
Python数据分析:数据可视化(Matplotlib、Seaborn)
数据可视化是数据分析中不可或缺的一部分,通过将数据以图形的方式展示出来,可以更直观地理解数据的分布和趋势。在Python中,Matplotlib和Seaborn是两个非常流行和强大的数据可视化库。本文将详细介绍这两个库的使用方法,并附上一个综合详细的例子。