从菜鸟到大神:Python并发编程深度剖析,IO与CPU的异步战争!

简介: 【7月更文挑战第18天】Python并发涉及多线程、多进程和异步IO(asyncio)。异步IO适合IO密集型任务,如并发HTTP请求,能避免等待提高效率。多进程在CPU密集型任务中更优,因可绕过GIL限制实现并行计算。通过正确选择并发策略,开发者能提升应用性能和响应速度。

在Python的浩瀚宇宙中,并发编程是每位开发者从菜鸟迈向大神的必经之路。面对现代应用日益增长的性能需求,理解并掌握Python中的并发技术,特别是针对IO密集型与CPU密集型任务的优化,成为了关键。今天,我们将深入剖析Python中的并发机制,特别是如何通过异步编程来应对IO与CPU之间的“异步战争”。

并发编程基础
Python的并发编程主要有两种形式:多线程(Threading)与多进程(Multiprocessing),以及随着Python 3.5引入的异步IO(asyncio)。对于IO密集型任务,异步IO是最佳选择;而对于CPU密集型任务,多进程往往更为高效,因为Python的全局解释器锁(GIL)限制了多线程在CPU密集型任务上的并行性。

异步IO:IO密集型任务的救星
在异步编程中,我们不再等待IO操作(如文件读写、网络请求)完成后再继续执行,而是利用asyncio库来“同时”处理多个IO操作。下面是一个使用asyncio进行HTTP请求的示例:

python
import asyncio
import aiohttp

async def fetch(session, url):
async with session.get(url) as response:
return await response.text()

async def main():
async with aiohttp.ClientSession() as session:
html1 = await fetch(session, 'http://example.com')
html2 = await fetch(session, 'http://example.org')
print(f"First: {html1[:100]}...")
print(f"Second: {html2[:100]}...")

Python 3.7+

asyncio.run(main())
上述代码展示了如何使用asyncio并发地执行两个HTTP请求,而无需等待一个请求完成后再发起另一个。

多进程:CPU密集型任务的利器
对于CPU密集型任务,我们可以利用Python的multiprocessing模块来绕过GIL的限制。以下是一个简单的多进程示例,用于计算一系列数的平方:

python
from multiprocessing import Pool

def square(x):
return x * x

if name == 'main':
with Pool(5) as p: # 创建一个包含5个进程的进程池
print(p.map(square, range(10))) # 使用map函数将square函数应用于range(10)中的每个元素
在这个例子中,我们创建了一个包含5个进程的进程池,并使用map方法将square函数应用于0到9的整数上。由于每个进程都运行在自己的Python解释器中,因此它们可以并行地执行CPU密集型任务,有效利用了多核CPU的优势。

结语
从菜鸟到大神的旅程中,掌握Python的并发编程技术无疑是一个重要的里程碑。通过异步IO与多进程的结合使用,我们可以有效地应对IO密集型与CPU密集型任务,提升应用程序的性能与响应速度。记住,选择合适的并发模型,是打赢这场“异步战争”的关键。希望本文能为你在这条路上提供一些有用的指引。

相关文章
|
5天前
|
数据可视化 Linux iOS开发
Python测量CPU和内存使用率
这些示例帮助您了解如何在Python中测量CPU和内存使用率。根据需要,可以进一步完善这些示例,例如可视化结果或限制程序在特定范围内的资源占用。
47 22
|
7月前
|
并行计算 数据处理 Python
Python并发编程迷雾:IO密集型为何偏爱异步?CPU密集型又该如何应对?
在Python的并发编程世界中,没有万能的解决方案,只有最适合特定场景的方法。希望本文能够为你拨开迷雾,找到那条通往高效并发编程的光明大道。
94 2
|
2月前
|
机器学习/深度学习 API Python
Python 高级编程与实战:深入理解网络编程与异步IO
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧、数据科学、机器学习、Web 开发和 API 设计。本文将深入探讨 Python 在网络编程和异步IO中的应用,并通过实战项目帮助你掌握这些技术。
|
7月前
|
监控 并行计算 数据处理
构建高效Python应用:并发与异步编程的实战秘籍,IO与CPU密集型任务一网打尽!
在Python编程的征途中,面对日益增长的性能需求,如何构建高效的应用成为了每位开发者必须面对的课题。并发与异步编程作为提升程序性能的两大法宝,在处理IO密集型与CPU密集型任务时展现出了巨大的潜力。今天,我们将深入探讨这些技术的最佳实践,助你打造高效Python应用。
106 0
|
6月前
|
网络协议 物联网 API
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第26天】Python 是一门功能强大且易于学习的编程语言,Twisted 框架以其事件驱动和异步IO处理能力,在网络编程领域独树一帜。本文深入探讨 Twisted 的异步IO机制,并通过实战示例展示其强大功能。示例包括创建简单HTTP服务器,展示如何高效处理大量并发连接。
111 1
|
6月前
|
网络协议 调度 开发者
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第27天】本文介绍了Python网络编程中的Twisted框架,重点讲解了其异步IO处理机制。通过反应器模式,Twisted能够在单线程中高效处理多个网络连接。文章提供了两个实战示例:一个简单的Echo服务器和一个HTTP服务器,展示了Twisted的强大功能和灵活性。
100 0
|
7月前
|
存储 JSON 数据格式
Python 输入输出与文件处理: io、pickle、json、csv、os.path 模块详解
Python 输入输出与文件处理: io、pickle、json、csv、os.path 模块详解
95 0
|
2月前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
10天前
|
数据采集 安全 BI
用Python编程基础提升工作效率
一、文件处理整明白了,少加两小时班 (敲暖气管子)领导让整理100个Excel表?手都干抽筋儿了?Python就跟铲雪车似的,哗哗给你整利索!
50 11
|
2月前
|
人工智能 Java 数据安全/隐私保护
[oeasy]python081_ai编程最佳实践_ai辅助编程_提出要求_解决问题
本文介绍了如何利用AI辅助编程解决实际问题,以猫屎咖啡的购买为例,逐步实现将购买斤数换算成人民币金额的功能。文章强调了与AI协作时的三个要点:1) 去除无关信息,聚焦目标;2) 将复杂任务拆解为小步骤,逐步完成;3) 巩固已有成果后再推进。最终代码实现了输入验证、单位转换和价格计算,并保留两位小数。总结指出,在AI时代,人类负责明确目标、拆分任务和确认结果,AI则负责生成代码、解释含义和提供优化建议,编程不会被取代,而是会更广泛地融入各领域。
102 28

热门文章

最新文章