Transformers 4.37 中文文档(四十二)(2)https://developer.aliyun.com/article/1565016
MarianForCausalLM
class transformers.MarianForCausalLM
( config )
forward
( input_ids: LongTensor = None attention_mask: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None head_mask: Optional = None cross_attn_head_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(torch.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
之间:
- 1 表示
未被掩码
的标记, - 0 表示
被掩码
的标记。
- 什么是注意力掩码?
encoder_hidden_states
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。encoder_attention_mask
(torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用。掩码值选择在[0, 1]
之间:head_mask
(torch.Tensor
of shape(decoder_layers, decoder_attention_heads)
, optional) — 用于使注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]
之间:
- 1 表示头部
未被掩码
。 - 0 表示头部被
掩码
。
cross_attn_head_mask
(torch.Tensor
of shape(decoder_layers, decoder_attention_heads)
, optional) — 用于使交叉注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]
之间:
- 1 表示头部
未被掩码
, - 0 表示头部被
掩码
。
past_key_values
(tuple(tuple(torch.FloatTensor))
, optional, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,以及 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。当模型用作序列到序列模型中的解码器时,只有在需要时才需要这两个额外的张量。
包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可以用于加速顺序解码(请参见past_key_values
输入)。
如果使用past_key_values
,用户可以选择仅输入最后一个decoder_input_ids
(即没有将其过去键值状态提供给此模型的那些)的形状为(batch_size, 1)
的输入,而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。labels
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于计算掩码语言建模损失的标签。索引应该在[0, ..., config.vocab_size]
范围内,或者为-100(参见input_ids
文档)。索引设置为-100
的标记将被忽略(掩码),损失仅计算具有[0, ..., config.vocab_size]
标签的标记。use_cache
(bool
, optional) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。
- 对于未被
masked
的标记为 1。 - 对于被
masked
的标记为 0。
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。return_dict
(bool
, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或torch.FloatTensor
元组
一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(MarianConfig)和输入的各种元素。
loss
(torch.FloatTensor
of shape(1,)
, optional, 当提供labels
时返回) — 语言建模损失(用于下一个标记预测)。logits
(torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(torch.FloatTensor)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入输出的一个 + 每层输出的一个)。
模型在每一层输出的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(torch.FloatTensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。past_key_values
(tuple(tuple(torch.FloatTensor))
, optional, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的torch.FloatTensor
元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态,如果模型用于编码器-解码器设置,则相关。仅在config.is_decoder = True
时相关。
包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。
示例:
>>> from transformers import AutoTokenizer, MarianForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-fr-en") >>> model = MarianForCausalLM.from_pretrained("Helsinki-NLP/opus-mt-fr-en", add_cross_attention=False) >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size] >>> list(logits.shape) == expected_shape True
TensorFlowHide TensorFlow content
TFMarianModel
class transformers.TFMarianModel
( config: MarianConfig *inputs **kwargs )
参数
config
(MarianConfig) — 具有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,只会加载配置。 请查看 from_pretrained() 方法以加载模型权重。
裸的 MARIAN 模型输出没有特定头部的原始隐藏状态。 该模型继承自 TFPreTrainedModel。 请查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
该模型也是一个tf.keras.Model子类。 将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。 由于这种支持,当使用 model.fit()
等方法时,您应该可以“轻松”地工作 - 只需以 model.fit()
支持的任何格式传递您的输入和标签! 但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:
- 一个仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个变长列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像将输入传递给任何其他 Python 函数一样传递输入!
call
( input_ids: tf.Tensor | None = None attention_mask: tf.Tensor | None = None decoder_input_ids: tf.Tensor | None = None decoder_attention_mask: tf.Tensor | None = None decoder_position_ids: tf.Tensor | None = None head_mask: tf.Tensor | None = None decoder_head_mask: tf.Tensor | None = None cross_attn_head_mask: tf.Tensor | None = None encoder_outputs: tf.Tensor | None = None past_key_values: Tuple[Tuple[tf.Tensor]] | None = None inputs_embeds: tf.Tensor | None = None decoder_inputs_embeds: tf.Tensor | None = None use_cache: bool | None = None output_attentions: bool | None = None output_hidden_states: bool | None = None return_dict: bool | None = None training: bool = False **kwargs ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSeq2SeqModelOutput or tuple(tf.Tensor)
参数
input_ids
(tf.Tensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(tf.Tensor
of shape(batch_size, sequence_length)
, optional) — 遮罩,用于避免在填充标记索引上执行注意力。 遮罩值选择在[0, 1]
之间:
- 1 表示“未屏蔽”的标记,
- 0 表示“屏蔽”的标记。
- 什么是注意力遮罩?
decoder_input_ids
(tf.Tensor
of shape(batch_size, target_sequence_length)
, optional) — 词汇表中解码器输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是解码器输入 ID?
Marian 使用pad_token_id
作为decoder_input_ids
生成的起始标记。如果使用了past_key_values
,可以选择仅输入最后的decoder_input_ids
(参见past_key_values
)。decoder_attention_mask
(tf.Tensor
of shape(batch_size, target_sequence_length)
, optional) — 将默认生成并忽略填充标记。不建议为大多数用例设置此项。decoder_position_ids
(tf.Tensor
of shape(batch_size, sequence_length)
, optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。head_mask
(tf.Tensor
of shape(encoder_layers, encoder_attention_heads)
, optional) — 用于将编码器中注意力模块的选定头部置零的掩码。掩码值选定为[0, 1]
:
- 1 表示头部未被
掩码
, - 0 表示头部被
掩码
。
decoder_head_mask
(tf.Tensor
of shape(decoder_layers, decoder_attention_heads)
, optional) — 用于将解码器中注意力模块的选定头部置零的掩码。掩码值选定为[0, 1]
:
- 1 表示头部未被
掩码
, - 0 表示头部被
掩码
。
cross_attn_head_mask
(tf.Tensor
of shape(decoder_layers, decoder_attention_heads)
, optional) — 用于将交叉注意力模块的选定头部置零的掩码。掩码值选定为[0, 1]
:
- 1 表示头部未被
掩码
, - 0 表示头部被
掩码
。
encoder_outputs
(tf.FloatTensor
, optional) — 编码器最后一层的隐藏状态输出。用于解码器的交叉注意力。形状为(batch_size, sequence_length, hidden_size)
的序列past_key_values
(Tuple[Tuple[tf.Tensor]]
of lengthconfig.n_layers
) — 包含预先计算的注意力块的键和值隐藏状态。可用于加速解码。如果使用了past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(那些没有将其过去的键值状态提供给此模型的)形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。inputs_embeds
(tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,这将很有用,而不是使用模型的内部嵌入查找矩阵。use_cache
(bool
, optional, 默认为True
) — 如果设置为True
,将返回past_key_values
键值状态,并可用于加速解码(参见past_key_values
)。在训练期间设置为False
,在生成期间设置为True
。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。此参数仅可在急切模式下使用,在图模式中将使用配置中的值。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数仅可在急切模式下使用,在图模式中将使用配置中的值。return_dict
(bool
,可选) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。training
(bool
,可选,默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
返回
transformers.modeling_tf_outputs.TFSeq2SeqModelOutput 或tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFSeq2SeqModelOutput 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(MarianConfig)和输入的不同元素。
last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
) — 模型解码器最后一层的隐藏状态序列。
如果仅使用past_key_values
,则输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。past_key_values
(List[tf.Tensor]
,可选,当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tf.Tensor
列表,每个张量形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
。
包含解码器的预计算隐藏状态(注意力块中的键和值),可用于加速顺序解码。decoder_hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入输出,一个用于每层输出)。
解码器在每一层输出的隐藏状态以及初始嵌入输出。decoder_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。encoder_last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
,可选) — 模型编码器最后一层的隐藏状态序列。encoder_hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入输出,一个用于每层输出)。
编码器在每一层输出的隐藏状态以及初始嵌入输出。encoder_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
TFMarianModel 的前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用 Module
实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFMarianModel >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> model = TFMarianModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> outputs = model(inputs) >>> last_hidden_states = outputs.last_hidden_state
TFMarianMTModel
transformers.TFMarianMTModel
类
( config *inputs **kwargs )
参数
config
(MarianConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。
具有语言建模头的 MARIAN 模型。可用于摘要。此模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
此模型也是 tf.keras.Model 的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有相关信息。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用 model.fit()
等方法时,应该“只需工作” - 只需以 model.fit()
支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:
- 只有一个包含
input_ids
的张量,没有其他内容:model(input_ids)
- 一个长度可变的列表,其中包含在文档字符串中给出的顺序中的一个或多个输入张量:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给出的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 subclassing 创建模型和层时,您无需担心这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: tf.Tensor | None = None attention_mask: tf.Tensor | None = None decoder_input_ids: tf.Tensor | None = None decoder_attention_mask: tf.Tensor | None = None decoder_position_ids: tf.Tensor | None = None head_mask: tf.Tensor | None = None decoder_head_mask: tf.Tensor | None = None cross_attn_head_mask: tf.Tensor | None = None encoder_outputs: TFBaseModelOutput | None = None past_key_values: Tuple[Tuple[tf.Tensor]] | None = None inputs_embeds: tf.Tensor | None = None decoder_inputs_embeds: tf.Tensor | None = None use_cache: bool | None = None output_attentions: bool | None = None output_hidden_states: bool | None = None return_dict: bool | None = None labels: tf.Tensor | None = None training: bool = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or tuple(tf.Tensor)
参数
input_ids
(tf.Tensor
的形状为({0})
) — 输入序列标记在词汇表中的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(tf.Tensor
of shape({0})
, optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
之间:
- 1 表示
未被掩码
的标记, - 0 表示标记
被掩码
。
- 什么是注意力掩码?
decoder_input_ids
(tf.Tensor
of shape(batch_size, target_sequence_length)
, optional) — 解码器输入序列标记在词汇表中的索引。
索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
()。
什么是解码器输入 ID?
Marian 使用pad_token_id
作为decoder_input_ids
生成的起始标记。如果使用past_key_values
,可以选择仅输入最后的decoder_input_ids
(参见past_key_values
)。decoder_attention_mask
(tf.Tensor
of shape(batch_size, target_sequence_length)
, optional) — 将默认生成并忽略填充标记。不建议在大多数情况下设置此项。decoder_position_ids
(tf.Tensor
of shape(batch_size, sequence_length)
, optional) — 解码器输入序列标记在位置嵌入中的位置索引。选在范围[0, config.max_position_embeddings - 1]
中。head_mask
(tf.Tensor
of shape(encoder_layers, encoder_attention_heads)
, optional) — 用于使编码器中注意力模块中的特定头部失效的掩码。掩码值选在[0, 1]
之间:
- 1 表示头部
未被掩码
, - 0 表示头部
被掩码
。
decoder_head_mask
(tf.Tensor
of shape(decoder_layers, decoder_attention_heads)
, optional) — 在解码器中用于使注意力模块中的特定头部失效的掩码。掩码值选在[0, 1]
之间:
- 1 表示头部
未被掩码
, - 0 表示头部
被掩码
。
cross_attn_head_mask
(tf.Tensor
of shape(decoder_layers, decoder_attention_heads)
, optional) — 用于使交叉注意力模块中的特定头部失效的掩码。掩码值选在[0, 1]
之间:
- 1 表示头部
未被掩码
, - 0 表示头部
被掩码
。
encoder_outputs
(tf.FloatTensor
, optional) — 编码器最后一层的输出的隐藏状态。用于解码器的交叉注意力。形状为(batch_size, sequence_length, hidden_size)
是一个序列past_key_values
(Tuple[Tuple[tf.Tensor]]
of lengthconfig.n_layers
) — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(即未将其过去的键值状态提供给此模型的标记)的形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。inputs_embeds
(tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,可以直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。use_cache
(bool
, optional, 默认为True
) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。在训练期间设置为False
,在生成期间设置为True
。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。此参数仅在急切模式下可用,在图模式下将使用配置中的值。output_hidden_states
(bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。return_dict
(bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。training
(bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。labels
(tf.tensor
of shape(batch_size, sequence_length)
, 可选) — 用于计算掩码语言建模损失的标签。索引应该在[0, ..., config.vocab_size]
或 -100(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码),损失仅计算标签在[0, ..., config.vocab_size]
中的标记。
返回
transformers.modeling_tf_outputs.TFSeq2SeqLMOutput 或 tuple(tf.Tensor)
transformers.modeling_tf_outputs.TFSeq2SeqLMOutput 或 tf.Tensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时)包含根据配置(MarianConfig)和输入而异的各种元素。
loss
(tf.Tensor
of shape(n,)
, 可选, 当提供labels
时返回,其中 n 是未屏蔽标签的数量) — 语言建模损失。logits
(tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。past_key_values
(List[tf.Tensor]
, 可选, 当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
。
包含解码器的预计算隐藏状态(注意力块中的键和值),可用于加速顺序解码(查看past_key_values
输入)。decoder_hidden_states
(tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每层的输出)。
每层解码器的输出的隐藏状态加上初始嵌入输出。decoder_attentions
(tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
解码器的注意力权重,在注意力 SoftMax 之后,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
解码器的交叉注意力层的注意力权重,在注意力 SoftMax 之后,用于计算交叉注意力头中的加权平均值。encoder_last_hidden_state
(tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, 可选) — 模型编码器最后一层的隐藏状态序列。encoder_hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
编码器在每一层的隐藏状态加上初始嵌入输出。encoder_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
TFMarianMTModel 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行前后处理步骤,而后者会默默地忽略它们。
marian-nmt 的 transformer.h(c++)的 TF 版本。设计用于 OPUS-NMT 翻译检查点。可用模型列在这里。
示例:
>>> from transformers import AutoTokenizer, TFMarianMTModel >>> from typing import List >>> src = "fr" # source language >>> trg = "en" # target language >>> sample_text = "où est l'arrêt de bus ?" >>> model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" >>> model = TFMarianMTModel.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) >>> batch = tokenizer([sample_text], return_tensors="tf") >>> gen = model.generate(**batch) >>> tokenizer.batch_decode(gen, skip_special_tokens=True) "Where is the bus stop ?"
JAX 隐藏 JAX 内容
FlaxMarianModel
class transformers.FlaxMarianModel
( config: MarianConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
config
(MarianConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。dtype
(jax.numpy.dtype
,可选,默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。
这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的dtype
进行。
“请注意,这只指定了计算的数据类型,不会影响模型参数的数据类型。”
如果希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
裸的 Marian 模型,输出原始的隐藏状态,没有任何特定的头部。这个模型继承自 FlaxPreTrainedModel。查看超类文档以了解库实现的所有模型的通用方法(例如下载或保存,调整输入嵌入大小,修剪头等)。
这个模型也是 Flax Linen flax.nn.Module子类。将其用作常规 Flax 模块,并参考 Flax 文档以了解所有与一般用法和行为相关的事项。
最后,这个模型支持 JAX 的内在特性,比如:
__call__
( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的jnp.ndarray
)— 词汇表中输入序列标记的索引。默认情况下,如果提供填充,则将忽略填充。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的jnp.ndarray
,可选)— 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:
- 1 用于未被“掩码”处理的标记,
- 0 用于被“掩码”处理的标记。
- 什么是注意力掩码?
decoder_input_ids
(形状为(batch_size, target_sequence_length)
的jnp.ndarray
,可选)— 词汇表中解码器输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是解码器输入 ID?
对于翻译和摘要训练,应提供decoder_input_ids
。如果未提供decoder_input_ids
,则模型将根据论文将input_ids
向右移动以进行去噪预训练。decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的jnp.ndarray
,可选)— 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。因果掩码也将默认使用。
如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参见论文中的图表 1。position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 每个输入序列标记的位置的索引在位置嵌入中。在范围[0, config.max_position_embeddings - 1]
中选择。decoder_position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 每个解码器输入序列标记的位置的索引在位置嵌入中。在范围[0, config.max_position_embeddings - 1]
中选择。output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回的张量下的attentions
。output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回的张量下的hidden_states
。return_dict
(bool
,可选)— 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包括根据配置(MarianConfig)和输入不同的元素。
last_hidden_state
(jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
) — 模型解码器最后一层的隐藏状态序列。
如果使用past_key_values
,则只输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。past_key_values
(tuple(tuple(jnp.ndarray))
, optional, 当传递use_cache=True
或config.use_cache=True
时返回 — 长度为config.n_layers
的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。
包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可以用于加速顺序解码(参见past_key_values
输入)。decoder_hidden_states
(tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回 — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每层的输出)。
每层解码器的隐藏状态加上初始嵌入输出。decoder_attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回 — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回 — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。encoder_last_hidden_state
(jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 模型编码器最后一层的隐藏状态序列。encoder_hidden_states
(tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回 — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每层的输出)。
每层编码器的隐藏状态加上初始嵌入输出。encoder_attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回 — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
FlaxMarianPreTrainedModel
的前向方法重写了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个函数,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxMarianModel >>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> model = FlaxMarianModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state
Transformers 4.37 中文文档(四十二)(4)https://developer.aliyun.com/article/1565020