Transformers 4.37 中文文档(四十八)(5)

简介: Transformers 4.37 中文文档(四十八)

Transformers 4.37 中文文档(四十八)(4)https://developer.aliyun.com/article/1565010


NezhaForSequenceClassification

class transformers.NezhaForSequenceClassification

< source >

( config )

参数

  • config(NezhaConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

Nezha 模型变压器顶部带有序列分类/回归头(池化输出顶部的线性层),例如用于 GLUE 任务。

此模型继承自 PreTrainedModel。查看超类文档以获取库实现的所有模型的通用方法(例如下载或保存,调整输入嵌入大小,修剪头部等)。

此模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)— 遮罩,避免在填充标记索引上执行注意力。选择的掩码值在[0, 1]中:
  • 1 表示未被遮罩的标记,
  • 0 表示被遮罩的标记。
  • 什么是注意力遮罩?
  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
  • 0 对应于句子 A标记,
  • 1 对应于句子 B标记。
  • 什么是标记类型 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块中选择的头部无效的掩码。选择的掩码值在[0, 1]中:
  • 1 表示头部未被遮罩,
  • 0 表示头部被遮罩。
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,您可以选择直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为(batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个torch.FloatTensor元组(如果传递return_dict=False或当config.return_dict=False时)包含各种元素,取决于配置(NezhaConfig)和输入。

  • loss (torch.FloatTensor,形状为(1,)可选,当提供labels时返回) — 分类(如果 config.num_labels==1 则为回归)损失。
  • logits (torch.FloatTensor,形状为(batch_size, config.num_labels)) — SoftMax 之前的分类(如果 config.num_labels==1 则为回归)分数。
  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出+每层的输出)。
    模型在每一层输出处的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), 可选, 当传递output_attentions=True或当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

NezhaForSequenceClassification 前向方法,覆盖__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个函数,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

单标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, NezhaForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForSequenceClassification.from_pretrained("sijunhe/nezha-cn-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = NezhaForSequenceClassification.from_pretrained("sijunhe/nezha-cn-base", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, NezhaForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForSequenceClassification.from_pretrained("sijunhe/nezha-cn-base", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = NezhaForSequenceClassification.from_pretrained(
...     "sijunhe/nezha-cn-base", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

NezhaForMultipleChoice

class transformers.NezhaForMultipleChoice

<来源>

( config )

参数

  • config (NezhaConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

Nezha 模型,顶部带有一个多选分类头(池化输出顶部的线性层和一个 Softmax),例如用于 RocStories/SWAG 任务。

这个模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有事项。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, num_choices, sequence_length)torch.LongTensor)- 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 IDs?
  • attention_mask(形状为(batch_size, num_choices, sequence_length)torch.FloatTensor可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:
  • 1 表示未被masked的标记,
  • 0 表示被masked的标记。
  • 什么是注意力掩码?
  • token_type_ids(形状为(batch_size, num_choices, sequence_length)torch.LongTensor可选)- 段标记索引,指示输入的第一部分和第二部分。索引选在[0, 1]之间:
  • 0 对应于一个sentence A标记,
  • 1 对应于一个sentence B标记。
  • 什么是 token type IDs?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)- 用于使自注意力模块的选定头部失效的掩码。掩码值选在[0, 1]之间:
  • 1 表示头部未被masked
  • 0 表示头部被masked
  • inputs_embeds(形状为(batch_size, num_choices, sequence_length, hidden_size)torch.FloatTensor可选)- 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
  • output_attentionsbool可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_statesbool可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dictbool可选)- 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels(形状为(batch_size,)torch.LongTensor可选)- 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]之间,其中num_choices是输入张量的第二维度的大小。(参见上面的input_ids

返回

transformers.modeling_outputs.MultipleChoiceModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或者一个torch.FloatTensor的元组(如果传递了return_dict=False或者config.return_dict=False时)包含不同的元素,取决于配置(NezhaConfig)和输入。

  • loss(形状为*(1,)*的torch.FloatTensor可选,当提供labels时返回)- 分类损失。
  • logits(形状为(batch_size, num_choices)torch.FloatTensor)- num_choices是输入张量的第二维度。(参见上面的input_ids)。
    分类得分(SoftMax 之前)。
  • hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组(如果模型有嵌入层,则为嵌入的输出 + 每层的输出)。
    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

NezhaForMultipleChoice 的前向方法,覆盖了__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, NezhaForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForMultipleChoice.from_pretrained("sijunhe/nezha-cn-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

NezhaForTokenClassification

class transformers.NezhaForTokenClassification

<来源>

( config )

参数

  • config (NezhaConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

Nezha 模型在顶部带有一个令牌分类头(隐藏状态输出的线性层)例如用于命名实体识别(NER)任务。

该模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

该模型也是 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列令牌的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 避免在填充令牌索引上执行注意力的掩码。掩码值选择在 [0, 1] 中:
  • 1 代表未被masked的令牌,
  • 0 代表被masked的令牌。
  • 什么是注意力掩码?
  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 段令牌索引,指示输入的第一部分和第二部分。索引选择在 [0, 1] 中:
  • 0 对应于 句子 A 的令牌,
  • 1 对应于 句子 B 的令牌。
  • 什么是令牌类型 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块中选择的头部失效的掩码。在[0, 1]中选择的掩码值:
  • 1 表示头部未被“掩盖”,
  • 0 表示头部被“掩盖”。
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。
  • labels(形状为(batch_size, sequence_length)torch.LongTensor可选)— 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]内。

返回

transformers.modeling_outputs.TokenClassifierOutput 或tuple(torch.FloatTensor)

transformers.modeling_outputs.TokenClassifierOutput 或torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False,则返回)包含各种元素,具体取决于配置(NezhaConfig)和输入。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)— 分类损失。
  • logits(形状为(batch_size, sequence_length, config.num_labels)torch.FloatTensor)— 分类分数(SoftMax 之前)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层的输出,则为嵌入的输出+每层的输出)。
    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

NezhaForTokenClassification 前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, NezhaForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForTokenClassification.from_pretrained("sijunhe/nezha-cn-base")
>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

NezhaForQuestionAnswering

class transformers.NezhaForQuestionAnswering

<来源>

( config )

参数

  • config (NezhaConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。

Nezha 模型在顶部具有一个跨度分类头,用于提取式问答任务,如 SQuAD(在隐藏状态输出的顶部有线性层,用于计算 span start logitsspan end logits)。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档,了解所有与一般用法和行为相关的事项。

forward

< source >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在 [0, 1] 中选择:
  • 1 用于未被遮蔽的标记,
  • 0 用于被遮蔽的标记。
  • 什么是注意力掩码?
  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 段落标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:
  • 0 对应于 句子 A 标记,
  • 1 对应于 句子 B 标记。
  • 什么是标记类型 ID?
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值在 [0, 1] 中选择:
  • 1 表示头部未被遮蔽,
  • 0 表示头部被遮蔽。
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制权,以便将 input_ids 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。
  • start_positions (torch.LongTensor of shape (batch_size,), 可选) — 用于计算标记跨度开始位置的位置(索引)标签。位置被夹紧到序列的长度 (sequence_length)。序列外的位置不会被考虑在内计算损失。
  • end_positions (torch.LongTensor of shape (batch_size,), 可选) — 用于计算标记跨度结束位置的位置(索引)标签。位置被夹紧到序列的长度 (sequence_length)。序列外的位置不会被考虑在内计算损失。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutput 或者 tuple(torch.FloatTensor)

transformers.modeling_outputs.QuestionAnsweringModelOutput 或者一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或者 config.return_dict=False)包含各种元素,取决于配置(NezhaConfig)和输入。

  • loss (torch.FloatTensor of shape (1,), 可选,当提供了 labels 时返回) — 总跨度提取损失是起始位置和结束位置的交叉熵之和。
  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 跨度开始分数(SoftMax 之前)。
  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — Span-end scores (before SoftMax).
  • hidden_states (tuple(torch.FloatTensor)可选,当传递了 output_hidden_states=True 或者 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组(如果模型有嵌入层,则为嵌入的输出 + 每一层的输出)。
    模型在每一层输出处的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor)可选,当传递了 output_attentions=True 或者 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组(每一层一个)。
    注意力权重经过注意力 softmax 后,用于计算自注意力头中的加权平均值。

NezhaForQuestionAnswering 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用 Module 实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

例如:

>>> from transformers import AutoTokenizer, NezhaForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForQuestionAnswering.from_pretrained("sijunhe/nezha-cn-base")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
相关文章
|
5月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十九)(4)
Transformers 4.37 中文文档(四十九)
24 2
|
5月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十八)(2)
Transformers 4.37 中文文档(四十八)
39 2
|
5月前
|
存储 自然语言处理
Transformers 4.37 中文文档(四十八)(1)
Transformers 4.37 中文文档(四十八)
47 2
|
5月前
|
PyTorch 算法框架/工具 索引
Transformers 4.37 中文文档(四十八)(4)
Transformers 4.37 中文文档(四十八)
44 1
|
5月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(四十八)(3)
Transformers 4.37 中文文档(四十八)
42 1
|
5月前
|
机器学习/深度学习 存储 PyTorch
Transformers 4.37 中文文档(四十九)(3)
Transformers 4.37 中文文档(四十九)
28 2
|
5月前
|
人工智能 自然语言处理 NoSQL
Transformers 4.37 中文文档(四十九)(1)
Transformers 4.37 中文文档(四十九)
108 2
|
5月前
|
存储 PyTorch API
Transformers 4.37 中文文档(四十九)(5)
Transformers 4.37 中文文档(四十九)
82 1
|
5月前
|
存储 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十九)(2)
Transformers 4.37 中文文档(四十九)
40 1
|
5月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(六十五)(3)
Transformers 4.37 中文文档(六十五)
37 1