Transformers 4.37 中文文档(四十八)(4)

简介: Transformers 4.37 中文文档(四十八)

Transformers 4.37 中文文档(四十八)(3)https://developer.aliyun.com/article/1565009


NezhaModel

class transformers.NezhaModel

<来源>

( config add_pooling_layer = True )

参数

  • config(NezhaConfig)—具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

裸 Nezha 模型变换器输出原始隐藏状态,没有特定的顶部头。

该模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

该模型还是一个 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

该模型可以作为编码器(仅具有自注意力)或解码器,此时在自注意力层之间添加了一层交叉注意力,遵循Ashish  Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan  N. Gomez, Lukasz Kaiser 和 Illia Polosukhin 在《Attention is all you need》中描述的架构。

要使模型作为解码器行为,需要使用配置中的is_decoder参数初始化为True。要在 Seq2Seq 模型中使用,模型需要使用is_decoder参数和add_cross_attention设置为True进行初始化;然后期望将encoder_hidden_states作为输入传递给前向传递。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None past_key_values: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)—词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在 [0, 1] 之间:
  • 对于未被masked的标记为 1,
  • 对于被masked的标记为 0。
  • 什么是注意力掩码?
  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 段标记索引,指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:
  • 0 对应于 句子 A 标记,
  • 1 对应于 句子 B 标记。
  • 什么是标记类型 ID?
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值在 [0, 1] 中选择:
  • 1 表示头部未被masked
  • 对于被masked的头部为 0。
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,可以直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制如何将 input_ids 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的 attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的 hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用。掩码值在 [0, 1] 中选择:
  • 对于未被masked的标记为 1,
  • 对于被masked的标记为 0。
  • past_key_values (tuple(tuple(torch.FloatTensor)),长度为 config.n_layers,每个元组有 4 个形状为 (batch_size, num_heads, sequence_length - 1, embed_size_per_head) 的张量) — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。
    如果使用了past_key_values,用户可以选择仅输入最后一个 decoder_input_ids(即那些没有将它们的过去键值状态提供给此模型的)的形状为 (batch_size, 1),而不是形状为 (batch_size, sequence_length) 的所有 decoder_input_ids
  • use_cache (bool, optional) — 如果设置为 True,将返回 past_key_values 键值状态,并可用于加速解码(参见 past_key_values)。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置(NezhaConfig)和输入的不同元素。

  • last_hidden_state(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor)— 模型最后一层输出的隐藏状态序列。
  • pooler_output(形状为(batch_size, hidden_size)torch.FloatTensor)— 经过进一步处理的序列第一个标记(分类标记)的最后一层隐藏状态(辅助预训练任务所用的层)。例如,对于 BERT 系列模型,这返回经过线性层和 tanh 激活函数处理后的分类标记。线性层权重是从预训练期间的下一个句子预测(分类)目标中训练的。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出,如果模型有一个嵌入层,+ 一个用于每一层的输出)。
    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
  • cross_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.add_cross_attention=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后使用,用于计算交叉注意力头中的加权平均值。
  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回)— 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量,如果config.is_encoder_decoder=True还有 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。
    包含预先计算的隐藏状态(自注意力块中的键和值,以及如果config.is_encoder_decoder=True在交叉注意力块中)可用于加速顺序解码的(见past_key_values输入)。

NezhaModel 的前向方法,覆盖了__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, NezhaModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaModel.from_pretrained("sijunhe/nezha-cn-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state

NezhaForPreTraining

class transformers.NezhaForPreTraining

<来源>

( config )

参数

  • config(NezhaConfig)— 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

Nezha 模型在预训练期间顶部有两个头部:一个掩码语言建模头部和一个下一个句子预测(分类)头部。

此模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存,调整输入嵌入,修剪头等)。

此模型还是一个 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None next_sentence_label: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.models.nezha.modeling_nezha.NezhaForPreTrainingOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)- 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)- 用于避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]内:
  • 1 表示未被 masked的标记,
  • 0 表示被 masked的标记。
  • 什么是注意力掩码?
  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)- 段标记索引,指示输入的第一部分和第二部分。选择的索引在[0, 1]内:
  • 0 对应于句子 A标记,
  • 1 对应于句子 B标记。
  • 什么是标记类型 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)- 用于使自注意力模块的选定头部失效的掩码。选择的掩码值在[0, 1]内:
  • 1 表示头部未被 masked
  • 0 表示头部被masked
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)- 可选地,您可以选择直接传递嵌入表示而不是传递input_ids。如果您希望更多地控制如何将input_ids索引转换为相关向量,则这很有用,而不是使用模型的内部嵌入查找矩阵。
  • output_attentionsbool可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的attentions
  • output_hidden_statesbool可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的hidden_states
  • return_dictbool可选)- 是否返回 ModelOutput 而不是普通元组。标签(形状为(batch_size, sequence_length)torch.LongTensor可选):用于计算被 masked 语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]内(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(masked),损失仅计算具有标签在[0, ..., config.vocab_size]内的标记。next_sentence_label(形状为(batch_size,)torch.LongTensor可选):用于计算下一个序列预测(分类)损失的标签。输入应为一个序列对(参见input_ids文档字符串)。索引应在[0, 1]内:
  • 0 表示序列 B 是序列 A 的延续,
  • 1 表示序列 B 是一个随机序列。kwargs(Dict[str, any],可选,默认为*{}*):用于隐藏已被弃用的旧参数。

返回

transformers.models.nezha.modeling_nezha.NezhaForPreTrainingOutputtuple(torch.FloatTensor)

一个transformers.models.nezha.modeling_nezha.NezhaForPreTrainingOutput或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含根据配置(NezhaConfig)和输入不同元素。

  • loss (optional, 当提供labels时返回,形状为(1,)torch.FloatTensor) — 总损失,作为掩码语言建模损失和下一个序列预测(分类)损失的总和。
  • prediction_logits (torch.FloatTensor,形状为(batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • seq_relationship_logits (torch.FloatTensor,形状为(batch_size, 2)) — 下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 连续性分数)。
  • hidden_states (tuple(torch.FloatTensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

NezhaForPreTraining 的前向方法覆盖了__call__特殊方法。

虽然前向传递的方法需要在这个函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, NezhaForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForPreTraining.from_pretrained("sijunhe/nezha-cn-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

NezhaForMaskedLM

class transformers.NezhaForMaskedLM

<来源>

( config )

参数

  • config(NezhaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部具有语言建模头的 Nezha 模型。

该模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

该模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (torch.FloatTensor,形状为(batch_size, sequence_length)optional) — 避免对填充标记索引执行注意力的掩码。掩码值在[0, 1]中选择:
  • 1 表示未被掩码的标记,
  • 0 表示被掩码的标记。
  • 什么是注意力掩码?
  • token_type_ids (torch.LongTensor,形状为(batch_size, sequence_length)optional) — 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
  • 0 对应于句子 A标记,
  • 1 对应于句子 B标记。
  • 什么是标记类型 ID?
  • head_mask (torch.FloatTensor,形状为(num_heads,)(num_layers, num_heads)optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值在[0, 1]中选择:
  • 1 表示头部未被掩码,
  • 0 表示头部被掩码。
  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)optional) — 可选地,可以直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
  • output_hidden_states (booloptional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
  • return_dict (booloptional) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为(batch_size, sequence_length)optional) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]中(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]中的标记。

返回

transformers.modeling_outputs.MaskedLMOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含根据配置(NezhaConfig)和输入的各种元素。

  • loss (torch.FloatTensor,形状为(1,)optional,当提供labels时返回) — 掩码语言建模(MLM)损失。
  • logits (torch.FloatTensor,形状为(batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_states (tuple(torch.FloatTensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出+每一层的输出)。
    模型在每一层输出的隐藏状态加上可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在自注意力头中使用注意力 softmax 后的注意力权重,用于计算加权平均值。

NezhaForMaskedLM 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module实例,而不是在此之后调用,因为前者负责运行前处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, NezhaForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)

NezhaForNextSentencePrediction

class transformers.NezhaForNextSentencePrediction

< source >

( config )

参数

  • config (NezhaConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

Nezha 模型在顶部有一个下一句预测(分类)头。

此模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。

forward

< source >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None **kwargs ) → export const metadata = 'undefined';transformers.modeling_outputs.NextSentencePredictorOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:
  • 1 用于未屏蔽的标记,
  • 0 用于屏蔽的标记。
  • 什么是注意力掩码?
  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 指示输入的第一部分和第二部分的段标记索引。索引在[0, 1]中选择:
  • 0 对应于句子 A的标记,
  • 1 对应于句子 B的标记。
  • 什么是标记类型 ID?
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块中选择的头部失效的掩码。掩码值在[0, 1]中选择:
  • 1 表示头部是未屏蔽
  • 0 表示头部是屏蔽
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,可以直接传递嵌入表示而不是传递 input_ids。如果您想要更多控制如何将 input_ids 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算下一个序列预测(分类)损失的标签。输入应该是一个序列对(参见 input_ids 文档字符串)。索引应该在 [0, 1] 范围内:
  • 0 表示序列 B 是序列 A 的继续,
  • 1 表示序列 B 是一个随机序列。

返回

transformers.modeling_outputs.NextSentencePredictorOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.NextSentencePredictorOutput 或一个 torch.FloatTensor 元组(如果传递 return_dict=False 或当 config.return_dict=False 时)包含根据配置(NezhaConfig)和输入的各种元素。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 next_sentence_label 时返回) — 下一个序列预测(分类)损失。
  • logits (torch.FloatTensor,形状为 (batch_size, 2)) — 下一个序列预测(分类)头的预测分数(在 SoftMax 之前的 True/False 继续分数)。
  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组(如果模型有嵌入层,则为嵌入输出的一个 + 每个层的输出的一个)。
    模型在每个层的输出的隐藏状态加上可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组(每个层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

NezhaForNextSentencePrediction 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module 实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, NezhaForNextSentencePrediction
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForNextSentencePrediction.from_pretrained("sijunhe/nezha-cn-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1]  # next sentence was random


Transformers 4.37 中文文档(四十八)(5)https://developer.aliyun.com/article/1565011

相关文章
|
4月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十一)(8)
Transformers 4.37 中文文档(四十一)
27 2
|
4月前
|
机器学习/深度学习 PyTorch TensorFlow
Transformers 4.37 中文文档(四十七)(5)
Transformers 4.37 中文文档(四十七)
59 12
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十七)(4)
Transformers 4.37 中文文档(四十七)
81 10
|
4月前
|
存储 自然语言处理 算法框架/工具
Transformers 4.37 中文文档(四十一)(4)
Transformers 4.37 中文文档(四十一)
193 3
|
4月前
|
PyTorch 算法框架/工具 索引
Transformers 4.37 中文文档(四十一)(7)
Transformers 4.37 中文文档(四十一)
27 2
|
4月前
|
PyTorch 算法框架/工具 索引
Transformers 4.37 中文文档(四十一)(5)
Transformers 4.37 中文文档(四十一)
22 0
|
4月前
|
机器学习/深度学习 自然语言处理 PyTorch
Transformers 4.37 中文文档(四十七)(3)
Transformers 4.37 中文文档(四十七)
57 10
|
4月前
|
存储 编解码 PyTorch
Transformers 4.37 中文文档(四十七)(1)
Transformers 4.37 中文文档(四十七)
29 6
|
4月前
|
存储 自然语言处理
Transformers 4.37 中文文档(四十八)(1)
Transformers 4.37 中文文档(四十八)
43 2
|
4月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十八)(2)
Transformers 4.37 中文文档(四十八)
38 2