Python实现用PSO粒子群优化算法对KMeans聚类模型进行优化项目实战

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: Python实现用PSO粒子群优化算法对KMeans聚类模型进行优化项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

粒子群优化算法(Particle Swarm optimization,PSO)又翻译为粒子群算法、微粒群算法、或微粒群优化算法。是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。通常认为它是群集智能 (Swarm intelligence, SI) 的一种。它可以被纳入多主体优化系统(Multiagent Optimization System, MAOS)。粒子群优化算法是由Eberhart博士和kennedy博士发明。

PSO模拟鸟群的捕食行为。一群鸟在随机搜索食物,在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的就是搜寻离食物最近的鸟的周围区域。

PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitnessvalue),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。

PSO初始化为一群随机粒子(随机解),然后通过迭代找到最优解,在每一次迭代中,粒子通过跟踪两个“极值”来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest,另一个极值是整个种群找到的最优解,这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分最优粒子的邻居,那么在所有邻居中的极值就是局部极值。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下

编号 

变量名称

描述

1

x1

花萼长度

2

x2

花萼宽度

3

x3

花瓣长度

4

x4

花瓣宽度

5

x5

目标变量

种类  

Iris Setosa(山鸢尾)

Iris Versicolour(杂色鸢尾)

Iris Virginica(维吉尼亚鸢尾)

数据详情如下(部分展示):

image.png

3.数据预处理

真实数据中可能包含了大量的缺失值和噪音数据或人工录入错误导致有异常点存在,非常不利于算法模型的训练。数据清洗的结果是对各种脏数据进行对应方式的处理,得到标准的、干净的、连续的数据,提供给数据统计、数据挖掘等使用。数据预处理通常包含数据清洗、归约、聚合、转换、抽样等方式,数据预处理质量决定了后续数据分析挖掘及建模工作的精度和泛化价值。以下简要介绍数据预处理工作中主要的预处理方法:

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

image.png

关键代码:

image.png

3.2查看数据集摘要

使用Pandas工具的info()方法查看数据集的摘要信息:

image.png

从上图可以看到,总共有150条数据,5个数据项,所有数据中没有缺失值。

关键代码:

image.png

3.3数据描述性统计分析

使用Pandas工具的describe()方法查看数据描述性统计分析信息:

image.png

通过上图可以看到,总数据量150条,每个数据项的平均值、标准差、最大值、最小值以及分位数值。其中x1平均值为5.84、标准差为0.83、最小值为4.30、最大值为7.90

关键代码:

image.png

4.探索性数据分析

4.1绘制特征与标签的小提琴图

seaborn工具的violinplot()方法进行绘图,图形化展示如下:

image.png

从上面图中可以看到,品种与每个特征之间的数据分布,例如:花萼长度特征,可以看到中位数、最大值、最小值等,品种为山鸢尾的中位数在5左右、品种为杂色鸢尾的中位数为5.5左右、品种为维吉尼亚鸢尾的中位数为6.3左右,以及针对每个品种 花萼长度数据的一个分布情况,其它特征的分析一样,就不一个一个分析

4.2绘制特征与标签的点图

seaborn工具的pointplot ()方法进行绘图,图形化展示如下:

image.png

从上面图中可以看到,品种与每个特征之间的数据分布,例如:花萼长度特征,可以看到平均值,品种为山鸢尾的平均值在5左右、品种为杂色鸢尾的平均值为5.8左右、品种为维吉尼亚鸢尾的平均值为6.5左右,就不一个一个分析

4.3生成各特征之间关系的矩阵图

seaborn工具的pairplot ()方法进行绘图,图形化展示如下:

image.png

从上图可以看到,花萼长度越小、花瓣宽度越窄 品种越偏向于山鸢尾;其它特征的分析以此类推。

4.4多维数据线性可视化

seaborn工具的andrews_curves()方法进行绘图,图形化展示如下:

image.png

通过上图可以清晰地看到每一个品种的鸢尾花数据的一个趋势,方便看到是否有异常的数据;本次可以看到无异常的数据。

4.5基于花萼和花瓣做线性回归可视化

seaborn工具的lmplot()方法进行绘图,图形化展示如下:

image.png

通过上图可以看到三种品种鸢尾花的花萼宽度与花萼长度的线性数据分布。

image.png

通过上图可以看到三种品种鸢尾花的花瓣宽度与花瓣长度的线性数据分布。

4.6相关性分析

用Pandas工具的corr()方法 matplotlib seaborn进行相关性分析,结果如下:

image.png

通过上图可以看到,数据项之间正值是正相关/负值是负相关,数值越大 相关性越强;花萼长度与花萼宽度不相关、花萼长度与花瓣长度、花瓣宽度相关性比较大。

5.特征工程

5.1 建立特征数据和标签数据

x5为标签数据,除x5之外的为特征数据。关键代码如下:

image.png

image.png

 

6.用PSO构建KMeans聚类模型

主要使用PSO粒子群优化算法和KMeans聚类算法,用于目标聚类。

PSO粒子群优化算法介绍:

image.png

image.png

v[] 是粒子的速度,present[] 是当前粒子的位置。pbest[] 和 gbest[] 如前定义。rand() 是介于(0,1)之间的随机数。c1,c2是学习因子。通常c1=c2=2。

PSO中并没有许多需要调节的参数,下面列出了这些参数以及经验设置

l 粒子数: 一般取 20–40. 其实对于大部分的问题10个粒子已经足够可以取得好的结果, 不过对于比较难的问题或者特定类别的问题, 粒子数可以取到100 或 200

l 粒子的长度: 这是由优化问题决定, 就是问题解的长度

l 粒子的范围: 由优化问题决定,每一维可是设定不同的范围

l Vmax: 最大速度,决定粒子在一个循环中最大的移动距离,通常设定为粒子的范围宽度,例如上面的例子里,粒子 (x1, x2, x3) x1 属于 [-10, 10], 那么 Vmax 的大小就是 20

l 学习因子: c1 和 c2 通常等于 2. 不过在文献中也有其他的取值. 但是一般 c1 等于 c2 并且范围在0和4之间

l 中止条件: 最大循环数以及最小错误要求. 例如, 在上面的神经网络训练例子中, 最小错误可以设定为1个错误聚类, 最大循环设定为2000, 这个中止条件由具体的问题确定.

l 全局PSO和局部PSO: 我们介绍了两种版本的粒子群优化算法: 全局版和局部版. 前者速度快不过有时会陷入局部最优. 后者收敛速度慢一点不过很难陷入局部最优. 在实际应用中, 可以先用全局PSO找到大致的结果,再用局部PSO进行搜索.

l 另外的一个参数是惯性权重。

6.1建模  

编号

模型名称

参数

1

PSO粒子群优化算法

w=0.72

2

c1=1.49

3

c2=1.49

4

K-means聚类算法

n_clusters=3

关键代码如下:

image.png

image.png

6.2聚类结果

没有簇,迭代次数为0的聚类结果为:

image.png

迭代200次,聚类结果为:

image.png

image.png

迭代400次,聚类结果为:

image.png

image.png

 

迭代600次,聚类结果为:

image.png

image.png

 

迭代800次,聚类结果为:

image.png

image.png

7.模型评估

7.1评估指标及结果

评估指标主要包括准确率、查准率、查全率、F1分值等等。

模型名称

指标名称

指标值

数据集

PSO粒子群优化KMeans聚类模型

准确率

0.92

查准率

0.94

查全率

0.92

F1分值

0.92

从上表可以看出,PSO粒子群优化KMeans聚类模准确率为92%  F1分值为92%,模型相当不错。 

关键代码如下:

image.png

7.2聚类报告

PSO粒子群优化KMeans聚类模型聚类报告:

image.png

从上图可以看到,聚类类型为0的F1分值为1.00;聚类类型为1的F1分值为0.89;聚类类型为2的F1分值为0.86;整个模型的准确率为92%.

8.结论与展望

综上所述,本文采用了PSO粒子群算法优化KMeans聚类模,最终证明了我们提出的模型效果良好。准确率达到了92%,可用于日常生活中进行建模预测,以提高价值。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1kwui2t8LqwfcmhoI7W04-Q 
提取码:1l3x
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
10天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
139 55
|
19天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
109 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
41 20
|
24天前
|
缓存 大数据 C语言
python优化
python优化
37 5
|
23小时前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
101 80
|
20天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
26天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
5天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
13天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
22天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。