为了深入理解Elasticsearch的各种精确查询方法,我们将通过一系列示例来演示术语查询、多术语查询、主键查询、范围查询、存在查询、前缀查询、正则查询和通配符查询的应用场景。首先,我们为示例准备一组数据:
POST person/_doc/1 { "id": "1", "sex": true, "name": "张三", "born": "2020-09-18 00:02:20", "location": { "lat": 41.12, "lon": -71.34 } } POST person/_bulk {"index":{"_id":"3"}} {"id":"3","name":"王五","sex":true,"born":"2020-09-14 00:02:20","location":{"lat":11.12,"lon":-71.34}} {"index":{"_id":"4"}} {"id":"4","name":"李四","sex":false,"born":"2020-10-14 00:02:20", "location":{"lat":11.12,"lon":-71.34}} {"index":{"_id":"5"}} {"id":"5","name":"黄六","sex":false,"born":"2020-11-14 00:02:20", "location":{"lat":11.12,"lon":-71.34}} POST person/_bulk {"index":{"_id":"2"}} {"id":"2","name":"赵二","sex":true,"born":"2020-09-14 00:02:20","location":{"lat":11.12,"lon":-71.34}} {"update":{"_id":"5"}} { "doc" : {"sex" : "false","born" : "2020-01-01 00:02:20"} } {"delete":{"_id":"5"}}
接下来,我们将逐一展示各类查询方法的使用。
术语查询(Term Query)
术语查询用于匹配字段中确切的单个值。例如,查找名为“张三”的人:
POST person/_search { "query": { "term": { "name.keyword": { "value": "张三" } } } }
多术语查询(Terms Query)
多术语查询允许同时匹配多个确切值。查找名为“张三”或“王五”的人:
POST person/_search { "query": { "terms": { "name.keyword": [ "张三", "王五" ] } } }
主键查询(IDs Query)
主键查询通过文档ID直接查找特定文档。查找ID为“1”和“2”的文档:
POST person/_search { "query": { "ids": { "values": ["1","2"] } } }
范围查询(Range Query)
范围查询用于筛选出某个字段值在指定区间内的文档。查找出生日期在“2020年9月11日至9月13日”之间的人员:
POST person/_search { "query": { "range": { "born": { "gte": "2020/09/11 00:00:00", "lte": "2020/09/13 00:00:00", "format": "yyyy/MM/dd HH:mm:ss" } } } } POST person/_search { "query": { "range": { "born": { "gte": "2020/09/11 08:00:00", "lte": "2020/09/13 08:00:00", "format": "yyyy/MM/dd HH:mm:ss", "time_zone": "+08:00" } } } }
存在查询(Existence Query)
存在查询用于筛选出具有特定字段的文档。在以下示例中,我们首先为文档添加“age”字段,然后查找包含该字段的文档:
POST person/_doc/5 { "id": "5", "sex": true, "name": "刘大", "born": "2020-02-18 00:02:20", "age": 20, "location": { "lat": 21.12, "lon": -71.34 } } POST person/_doc/5 { "id": "5", "sex": true, "name": "刘大", "born": "2020-02-18 00:02:20", "age": 20, "location": { "lat": 21.12, "lon": -71.34 } } POST person/_search { "query": { "exists": { "field": "age" } } }
前缀查询(Prefix Query)
前缀查询适用于查找字段值以特定前缀开头的文档。首先创建一个索引并设置“address”字段启用前缀索引,然后插入示例数据,最后进行前缀查询:
PUT prefix-test { "mappings": { "properties": { "address": { "type": "text", "index_prefixes": { "min_chars" : 1, "max_chars" : 5 } } } } } PUT prefix-test/_bulk {"index":{"_id":"1"}} {"id":"1","address":"wuhan qingshan"} {"index":{"_id":"2"}} {"id":"2","address":"guangzhou baiyun"} {"index":{"_id":"3"}} {"id":"3","address":"beijing chaoyang"} POST prefix-test/_search { "query": { "prefix": { "address": { "value": "baiy" } } } }
请注意,如果字段类型为keyword
而非text
,则不能使用index_prefixes
参数。keyword
字段的前缀搜索会比较耗费性能,不宜大量使用。
正则查询(Regexp Query)
正则查询利用正则表达式模式匹配字段值。查找名字中包含“大”字的人:
POST person/_search { "query": { "regexp": { "name.keyword": ".*大.*" } } }
通配符查询(Wildcard Query)
通配符查询使用通配符字符(如?
和*
)匹配字段值。查找名字以任意单个字符后接“大”字的人:
POST person/_search { "query": { "wildcard": { "name.keyword": "?大" } } }
正则查询和通配符查询虽然使用简便,但其性能开销较大,大量使用时需谨慎。
以上就是Elasticsearch中常用的精确查询方法,包括术语查询、多术语查询、主键查询、范围查询、存在查询、前缀查询、正则查询和通配符查询的示例。根据实际需求选择合适的查询类型,可以高效地从Elasticsearch索引中检索所需数据。